‘l’ Texas
INSTRUMENTS

TMS320C5x DSK

Applications Guide

TI DSP SOLUTIONS

15 YEARS OF LEADERSHIP

1997 Digital Signal Processing Solutions

TMS320C5x DSK Applications Guide

Literature Number: BPRA063
Texas Instruments Europe
October 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its
customers to obtain the latest version of relevant information to verify, before placing
orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI's standard warranty.
Testing and other quality control techniques are utilized to the extent Tl deems
necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage ("Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the
customer. Use of Tl products in such applications requires the written approval of an
appropriate Tl officer. Questions concerning potential risk applications should be
directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards should be provided by the customer to minimize inherent or
procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of Tl covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

Introduction

Digital Signal Processing (DSP) enables many of the key applications that we see in
our everyday lives and which we will see in the future. Mobile phones, sound cards,
graphics engines, image processors all have DSP engines. DSP is therefore an
important competence area for all engineers. The skills required to implement DSP
applications successfully tend to be different from those used when programming
other processors such as microcontrollers.

At Texas Instruments we acknowledge the need for a DSP applications guide which
makes the steep learning curve a little easier to climb. Using the knowledge and the
experience we have acquired since launching the world's first DSP, this application
guide aims to make the C50 Digital Signal Processing Starters Kit (DSK) more
accessible to first time user.

Texas Instruments 'C50 Digital Signal Processing Starter's Kit (DSK) is the ideal low-
cost development platform for running and debugging real-time applications. Based
on TI's industry proven TMS320C50 DSP processor, users have access to a board
with features that are normally available on development systems at a considerably
higher cost.

By adopting a practical approach to DSP, this guide helps you to begin using the DSK
and to start exploring its capabilities. While we appreciate that producing serious
applications on the device will take time, this application guide should make the first
few steps easier and enable users to create and develop their own software.

With the DSK board and accompanying of documentation, you have all the tools
necessary to understand the programming process. We hope that within just a few
hours spent with your DSK and this guide you will be able to:

® Get started with the DSK
* Assemble and run demonstration software examples
e Use demonstration software examples as useful programs
e Guide yourself through the steps necessary to develop DSK programs
e Modify software templates to develop your own programs
® Write your own software
e Go and learn more about DSP.
The guide is divided into four main sections, followed by appendices, glossary and

index. Chapter 1 outlines an introduction to 'C50 DSP and the DSK board with useful
background information. Chapter 2 illustrates programming principles and techniques
sophisticated software examples. This chapter is an introduction for the serious
applications developer to the more complex software design techniques for 'C50 DSP.
Finally, Chapter 4 presents further software examples. Fully commented sources for
all software are included on the accompying disk.

We very much hope that this guide will be a useful handbook for DSK users.

Contents

Contents

1. Welcome t0 the DSP Starter's Kit.............ccoocoouiieeee oot 1
1.1 Digital Signal ProCesSingoviuiiviiieeeiieeeeeeeee e 1
1.1.1 Overview.............c.......... o

1.1.2 Analogue Computers...................... |

1.1.3 Real-Time Processor Performance.... o1

1.2 WRY DIGItAI7 ..o e 2

1.3 THE 1018 Of DSP .o e 3

1.4 Texas Instruments DSP5

1.4.1 TMS320 Family.........c.cccoevveveenennn.5

1.4.2 Texas Instruments DSP Firsts

1.5 DSP systems
151 OVBIVIBW ..ottt 7

1.5.2 Typical System

1.6 Welcome to the TMS320C5x DSK.........
1.6.1 OVerview........ccccooveeveeceeece

1.6.2 A walk around the DSK board

1.7 Digital Signal ProCESSOrSoovveuiiieieeeeeceeeeeeee e
1.7.1 Overview

1.7.2 ArchiteCture TYPES.....cvioiieiceiiiieieeeeee e

1.7.3 The need for SPEEAcceeviiviiieieeceeeeeeeeeee e

1.7.4 Fixed-Point and Floating-Point

1.7.5 Typical Fixed-Point DSPScccocoiviiiieieieeeeee

1.8 A walk around the TMS320C5x Processor
181 OVEIVIEW ...t

1.8.2 MEMOIY ...

1.8.3 The Core..............

1.8.4 Internal Registers

1.8.5 Memory-Mapped Core Processor Registers

1.8.6 INtEITUPES ..o

1.8.7 PeripheralScoooiiieeeeeeeeee e

1.8.8 Memory-Mapped Peripheral Registers............cccccoovevveeiiiininn.

1.9 Introduction to Assembly Language Instructionsc.cccocoeveeveveennen...
1.9.1 Overview

1.9.2 Direct Addressing MOdEveeueeoeeeeeeeeeee e

1.9.3 Indirect Addressing MOdec.eoovveeeieeeie e

1.9.4 Immediate Addressing MOdecoeeveriiiniieieiiiiccecee e

1.9.5 Dedicated Register Addressingcccooeveuveveievieieieiieseee

1.9.6 Memory-Mapped Register Addressing

1.9.7 Circular Addressingccccoceeeiereireiiicceeceeee

110 MOre 0N DSK ..o

TMS320C5x DSK Applications Guide v

Contents

1.10.1 DSK MEMOrY MaPcoveiiiiiiiieiceiciiciene e 35
1.10.2 DSK Block Diagram36
1.10.3 The boot-up sequence of a DSK...........ccooiiiiiiii 36
2. The Programming PrOCESS.......ccueiiiiiiiiiiiiiciiit e 38
2.1 The DSK Package............ ...38
2.2 Getting the system ready.. .38
2.3 Trouble-Shooting.............. ... 38
2.4 UsiNg the DEDUGGETeeiiiiieeecie ettt 40
2.5 Suggested Hardware Configurationccocceveeniiiiiiiiiiiniciee e 43
2.6 Installing Demonstration SOftWarecovviiiiiriiic e 43
2.7 Assembling and running @ Program..........cceceeirineieoeniiiiciece e 44
2.8 PASS.ASM ..o e 46
2.9 The fundamentals of @ DSK Program..........coceciveirineiieeiiineseieenenen 48
2.9.1 OVervieWcccveeeveenieee, ... 48
2.9.2 Settingscccceeuvnee ... 51
2.9.3 Interrupt Settings........... ... 52
2.9.4 Processor Initialisationcccooeeeiiiiiiiiiesee e 53
2.9.5 AIC INIHIAISAHON ...veeeieeiieeiiecie et 56
2.9.6 MaIN PrOgrami.......ccooieiieeee ittt 64
2.9.7 Interrupt Service BOULINES ..o 64
2.10 A First Programcccccceoivenioiiiicnciciceae
2.10.1 ThEOIY ..o
2.10.2 Calculations -
2.10.3 Example of Q15 multiplication..........c.cocccviiiiiiniiiiiis 69
2.10.4 ThE Programccoeieeieieieiiie ettt 71
2.10.5 From PASS 10 SINEcoiiiiiiiiiciieceee et 73
2.10.6 RUNNINg the Programccoeoeeuiiierieniernec e 76
2.11 From Sine to MUusical NOESc..ovviiiiiieiciiiiccceccc e 79
2.11.1 BACKGIOUNG ...t 79
2.11.2 Implementation..... ..80
2.11.3 Octave 6.....ccoeveeeeenee. .81
2.11.4 Running the program85
2.12 A PC Controlled Tune GENEratorccccoceooeiiiiiiiiiiniciiiicccn e 86
2.12.1 BaACKGIOUNG ...ttt e 86
2.12.2 Using RS232 communications in assembly programs............ 90
2.12.3 The Programsc.cccoeeiiiiiiiniic e 93
2.12.4 Keyboard controlled notesccoccoveviviiiiiciiic, 96
3. APPHCAtION SOMWAIE.........oiiiiiiiiicie e 97
B INIrOAUCHION ... 97
B2 FIR FIBI e 97
B.2.1 QVBIVIBW ...t 97
3.2.2 Files and EQUIPMENtccooiiiiiiiiii i 97

vi Literature Number: BPRA063

Contents

3.2.83 OPEIatioNovieiciieiececee e 98
3.2.4 BaCKGrOUNGc.cooiiuiiiiiii e 98
3.2.5 A FIR filter Implementation on DSK............ccooooeveieieieen. 102
BB FIR ISR . 104
3.4 Amplitude MOAUIALOTooviii e 107
341 OVEIVIEW. ..ot 107
3.4.2 Files and EQUIPMENt.........ccooiiiiiiiiiiii e 107
3.4.3 0PEIatioN ...t 108
3.4.4 BaCKGroUNdccooiiiiiiiiiiieiece e 108
BA5 TREOTY .o 109
3.4.6 Implementationoccooiiiiiiiicece e 110
.5 REVEIDEIAE ... 113
351 OVEIVIEBW ... 113
3.5.2 Files and EQUIPMENt.........occooviiiiiiiiiiice e 113
3.5.83 0PEratioNocveiiiiiiieieee e 113
3.5.4 Backgroundc.ocoiiiiiiie e 114
3.5.5 THEOIY oo 114
3.5.6 Implementationccccocviiiiiiiiiiccee e 115
4. More Software EXamples..........cocoeiiiiiiioiiice e 122
4.1 INtroduCtionccoeeeeieiiiiiie e
4.2 Minuet Player "
4.2.1 OVEIVIBW. ..c.oviiiieiee e 122
422 FIlES ..ot 122
4.2.30PEratioNccccuiiiiiieitieeee e 123
4.3 SoUND RECOTTEY ..ottt 124
4.3.1 OVEIVIBW. ..o e 124
BA.3.2 FlBS ..o 124
4.3.3 Operation..........c.c........124
4.4 Host Driven Function Generatorccoceevvvivveiiieiicniennn.. ...126

4.4.1 OVEIVIEW ...t ...126
442 FIlES ...t 126
4.4.3 OPEratioN........cooeiiiiueiiaeieiet ettt 126
4.5 Host Driven DTMF Diallerc.cc.eiouiiuioiiieeeeeeeeeeeeeeeeeeeeee 128
451 OVEIVIBW ...ooiiiiiieiee et
452 Files............
4.5.3 Operation.....
4.6 Spectrum Analyser....
4.6.1 OVEIVIEW...cooviveniiieiiiee e
4.6.2 FileS ..o .
4.8.3 0OPratioN........coovviiiiiie et
4.7 OSCIllOSCOPE. ...ttt
4.7.1 OVEIVIBW ...ttt ettt

TMS320C5x DSK Applications Guide vii

Contents

.72 FIlBS....ooeeeeeeeeeeeeee ettt e 132

4.7.3 OPEIaAtioNccueiiiiiiiieeeeeete e 133

5. Additional INfOrMatION.........oooiiiiieee e 134
5.1 HINS NG TIPS..teitiiiieiieiiee ettt 134
5.1.1 DSK PrOCESSON ...ttt 134

5.1.2 DSK SOMWAIEoooviiiiiicecee e 134

BAB DSK AIC .. i 134

5.2 AlIC SEHINGS ...ttt ittt 136
5.2.1 Loading VaIUES ...c.couiiiiiiiier et 137

522 TA, TB, RA,RB ValUESooeoiiiiiieeiieee e 137

5.2.3 Typical ValIUBSccoveieiiieiiiiiececcecrc e 138

5.3 QUESHONS AN ANSWETS.......vuiiiiieeiiieetie ettt et et 139
5.4 KNOWN BUGJS ..o e vttt 139
5.4.1 HANASAKE ITOTeoveiieeeeeeeeeeeeee e e 139

B2 DTME Lottt ettt 139

B.4.3 FUNCHON ..ottt 140

5.4.4 Network ProbI@mMSooooiiieieeeece e 140

5.4.5 DSK Debugger 10adsccccocevviiniiiiiiiiiiiiieiieens 140

6. SoUrces Of INFOrMAtIONooviiiiiee e 141
6.1 Product Information CeNtrecovveeiiiiiieeiieie e 141
B.1.1 OVEIVIBW ..ottt 141

6.1.2 Product Information and Technical Support............cccocoeenes 141
B.1. 83 BBS .. e 142
B.2 INTEIMEE ... 142
6.2.1 TIKME™ Internet Information Service...........cccccoceveviiiiiinnnn 142
B.3 T WOTKSNOPS ...ttt 143
B.4 LIEIAIUIE ..ovveve ettt 144
6.4.1 The DSP Teaching Kit..........coccoociiniiiiiiiiiiiicieicc 144
6.4.2 TMS320C5x Related TI BOOKS.........ccoviviiiiiiiiiiiiie 144
6.5 Further Development...........cieviiieiriieeee et
6.5.1 Hardware..

B.5.2 SOMWAIE ...ttt

viii Literature Number: BPRA063

Contents

Figure 1:
Figure 2:

List of Figures

Advantages of a Digital SOIUtIONcccceciiiiiiiii 2
Embedded DSPs within a car RSOOSR UUPOUPOTRRPRPOO 4

Figure 3: Vide0coceeviiiniiiiicice et 4
Figure 4: Modem ettt 5
Figure 5: TMS320 Family.............. et 6
Figure 6: A typical DSP SYSIEMcoviiiiiiiii it 8
Figure 7: SAmPpling PrOCESSccoiuiiuiiiiiiiieie e 9
Figure 8: DSK Board LayOutcccoeriiiiiiiiiiiii i 11
Figure 9: Von Neumann and Harvard ArchiteCturecccooiiiiiiiiniiiiiiciceen 15
Figure 10: Typical Fixed-Point DSPcccooiiiiiiiiiii e 17
Figure 11: TMSB20C50oiiuiieieiieie et 19
Figure 12: Data Memory Page Pointer (DP).........ccccoooiiiiiiii 27
Figure 13: The operation of a Direct Memory Addressing Instruction ... 28
Figure 14: Auxiliary REQISErScccociiiiiiiiiiiiiiiii e 28
Figure 15: The operation of an indirect memory addressing instruction.......................... 29
Figure 16: The operation of an immediate addressing mode instruction......................... 30
Figure 17: The operation of a PLU instruction on DBMRccccooiiiiiiiiiis 31
Figure 18: The use of BMAR in data memory @CCeSSccoeiiiieiiiiiiiiiasieeieeceae 32
Figure 19: Loading of a memory-mapped register ... 32
Figure 20: The operation of a circular buffer ... 33
Figure 21: Memory Map of the C5x DSKcccociiiiiiiiiiiciie e 35
Figure 22: DSK BIOCK di@gramc.ccevieieiiiiiiiiii i 36
Figure 23: DSK debugger Mmain SCreENc..ccvvviiiiiiiiiiiee e 40
Figure 24: Filling data memory in DSK debugger.............cccocoiiiiiiiiiiicc s 41
Figure 25: Modifying contents of @ register ..o 41
Figure 26: Debugger register diSplayccocoviiiiiiiii i 42
Figure 27: Suggested hardware configurationccocooiiiiii 43
Figure 28: Loading @ DSK file ...c.c.viveuiiiiiiciiii i 45
Figure 29: Choosing @ download type...........ccovviiriinciiiiiciiiiecccc 45
Figure 30: Functionality of PASS.ASM........ccocooiiiiiic s 46
Figure 31: PASS.ASM FIoW Chartccooiiiiiei s 50
Figure 32: Memory ADAreSSEScciiiiiiiiiiiiiiiieie s 51
Figure 33: PASS.ASM SettingS........ccoiueuiuiiiiiiiciecice s 52
Figure 34: PASS.ASM INEITUPES.......c.viiriiiie e 52
Figure 35: PASS.ASM InitialiSationcccooviviiiniiiiiiiiii 53
Figure 36: Interrupt vector address calculation ... 55
Figure 37: PASS.ASM Board Initialisationcocoooiiiiiiiii 56

TMS320C5x DSK Applications Guide ix

Contents

Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:

ReSELAIC ..o

AIC Registers

Setting AlC REGISIEIS ...oviiiieiieeieeee e 60
Contents of TA and ACCUMUIALON..........ovvieiieiee et 60
Contents of RA and ACCUMUIAIONc.ooiiviiiiieiiiccc e 61
Contents of TB and ACCUMUIALOT.......c..oveieieieieiiccce e 61
Contents of RB and ACCUMUIALONcoeiiiiiiiic e 61
Bits of AIC CONMrol regisSter........cocviiiiiiiiii e 62
WIHING 10 ALC e 63
PASS Main Program.........ccccoiiiiiiit oot 64
PASS Interrupt Service ROUNINEccoiiiiiiiiieccicieee e 64
PASS through Program.....

Multiplier EXaMPIE «..oviiiiiie e
SiNe WaVe gENETAtIONcc.iiiiiiie e
Sine Wave Program..............cooueeiioeieeeece oo
Sine Wave Generator SEHINGScoveieiiiiiiiiee et 73
Sine Wave Processor Initialisationcc.ooviveiieieieciceeecc 74
MEIN PrOGIram ..ot 74
SINE WAVE ISR ... 74
Register Based MACooioiie e 76
A MUSICAI NOTE ..o 79
Musical Note frequencies and OCtAVEScovvrireeiriiieeeceee e 80
Coefficients for Octave 6 freQUENCIES...........cevuiriiiiiieiic e 80
Octave 6 program flOW.........ccooiiiiiiii e 81
Octave 6 musical notes data table.............cc.coceveiiieienie e 82
Interrupt Settings and Processor Initialisation s 82
Note selection in transmit ISRoocoiiiiiiiee e 83
Musical NOte GENETAtIONccviiviiiiiie i 84
DELAY SUDIOULINEceiieiiiie ettt 85
'C5X DSK RS232 CONNECHONS ...t 87
Serial transmiSSiON MOULINEccooiiiiiiieiee e 91
Serial reCeption TOULINE.........ooiieii it 92
Flow of PC_TUNE assembly programcccccceeeneereineenecieiecnenns 94
FIR Filter EQUIPMENT ..o 98
A high pass filter and its effect on a signalcccccoiviiiiiiiiiiin, 99
A sinusoid shifted by 90 degrees in phase ..., 100
FIR FIOT et 101
FIR Flow Chart.... .. 102
FIR COBIICIENTS ...t 103

Literature Number: BPRA063

Contents

Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

FIRISR FIOW Chartccoooiiiiiiiiie et 104
FIR ISR oo 104
The MUltiplication ProCESSc.eiiiericiieieeeccc i 105
Amplitude Modulator EQUIPMENtccooiiiiiiii i 108
Operation of an AM ... 109
FrequenCy SPeCIIUM ..o 109
Amplitude Modulator FIow Chart.........c.ccoooiviiiiiii 110
AM Filter COBfICIBNTSeooviiieie e
Amplitude Modulator ISR

Reverberation Equipment
AN EChO oo
Continuous Echo
Echo Generator Implementation
Reverberate FIow Chart ...
Reverberate SEtiNgSooiiiiii e
Reverberator Initialization ..o
Circular BUEIING «...oooiiiiie e
ReCeiVe SOUICE COORooviiiieiiie et
Music Player EQUIPMENTcooiiiiiiiiiiiiciie e
Sound Recorder EQUIPMENTcuiiiiiiiiiiiiii i
Function Generator EQUIPMENt ..ot
DTMF Equipment.......................
Spectrum Analyser Equipment...

Figure 100: Oscilloscope EQUIPMENT........ccciiiiiiiiiiiiiiiii e

TMS320C5x DSK Applications Guide Xi

Contents

List of Tables

Table 1: Internal REGISIErS ..ot 22
Table 2: Memory-Mapped Core Processor RegiSters.c..oovvveveveieeiciieeeeeeee e 23
Table 3: 'CB0 INtEITUPES. ... ci ittt e 24
Table 4: 'C50 Interrupt context save.. .24
Table 5: Memory-Mapped Peripheral RegiStersccoovveviiiiiiiiiieiiiicceeeeecee e 26
Table 6: Dedicated Register Addressing INStructionsSccoeeevveviiieeiciiieeceee e 31
Table 7: Bit functions 0of CBCRooiioieeeeee e 33
Table 8: PMST REQISIETeoiieieiieeiiteee ettt eens 54
Table 9: On-chip Single Access RAM configuration controlcccccoeeviiieeiiececnne. 54
Table 10: TCR REQISIEI .. .eiiiiii e 57
Table 11: Delay values for serial communiCationS............ccoeiiiioiiiiiiiieeeee e, 91

Xii Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

1. Welcome to the DSP Starter’s Kit

1.1 Digital Signal Processing

1.1.1 Overview
Digital Signal Processing is defined as:

“The science concerned with the representation of signals by sequences of
numbers and the subsequent processing of these number sequences.”

Processing involves either extracting certain parameters from a signal or transforming
it into a form that is more applicable. The processors that perform such operations are
known as Digital Signal Processors.

1.1.2 Analogue Computers

The human brain is an extremely powerful and complex analogue computing device
which performs sophisticaled analysis procedures. The brain interprets a vast array of
external stimuli against pre-determined characteristics to produce an intelligent
response. The nature of the brain's processor enables humans to complete a wide
variety of tasks as they happen in "real-time". A good illustration of this is driving a car
where the driver must co-ordinate the steering wheel, pedals and switches of the
vehicle according to the changing road conditions. It is imperative that this is done as
fast as the environment changes to ensure that the vehicle stays on-track. Although
the brain is powerful, it does have limited computational speed and it is also reluctant
to perform repetitive tasks. There are many instances when we may want a machine
to take decisions for us based on its own sensor readings.

Engineers have become experienced at detecting the continuous analogue signals
which are present within the natural environment, many of which humans cannot
sense. Problems arise when it is necessary to interpret these signals intelligently.
Computers offer the solution, but unfortunately analogue computers are not as
versatile as their digital equivalents. Once a continually varying analogue signal is
detected and represented in a digital form (sampled), processing is relatively easy.

1.1.3 Real-Time Processor Performance

The semiconductor market contains many different types of processor, all with
different levels of performance. Processors such as those found within a PC are
excellent at processing database and spreadsheet type applications. However, these
type of processors are less effective at processing real-time signals. The latest
generation of 586 based processors (Pentiums) are capable of implementing signal
processing algorithms but in majority of cases they cannot achieve these tasks in real-
time. For example, when decompressing video images, each video frame must be
decompressed before ending the display of the previous frame order to prevent the
picture looking jerky. Although PCs and conventional processors can decompress
such images, they cannot decompress the frames sufficiently fast to make the motion
appear smooth.

TMS320C5x DSK Applications Guide 1

Welcome to the DSP Starter’s Kit

To meet the demands of real-time signal processing, DSPs have special architectural
features designed onto silicon to enhance speed and efficiency. These features
enable Digital Signal Processors to provide the necessary computational processing
power for dealing in real-time with complex mathematical algorithms such as image
decompression.

There is a big performance gap between the conventional processors and DSPs when
benchmarked against signal processing applications. Even a low-end DSP can be ten
times faster than an 8-bit microcontroller at processing signals. When DSPs and
conventional processors are compared like for like, DSPs will always out-perform
conventional processors in signal processing applications.

1.2 Why Digital?

Electronic analogue computers are not as versatile as their digital counterparts. On
the other hand, digital computers can easily be configured to perform a variety of tasks
such as word processing and spreadsheet formatting as seen with a PC.

memory

word processor
spreadsheet

fax software
video conference

|program | B

« casc dependent
* programmability
« stability and repeatability

Figure 1: Advantages of a Digital Solution

When considering signal analysis in analogue systems, functions like filtering can be
implemented using discrete analogue components such as inductors, capacitors and
resistors. The long term stability of an analogue system is not constant and as a result
the filter characteristics change. Digital implementation of signal processing has
several distinct advantages:

e ltis possible to accomplish many tasks inexpensively that would be either difficult or
impossible with analogue electronics. For example, speech coding and Fourier
Transforms.

2 Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

e Digital systems are insensitive to environmental changes. Analogue components
change values with temperature, humidity and age. By contrast, every digital
system produced will give exactly the same result - thus aiding manufacture.

e Insensitivity to component tolerances means that, unlike analogue systems, two
DSPs will give an identical result every time, ensuring predictability and
repeatability. Significant production costs are incurred with analogue devices as
each system must be individually tuned.

e Re-programmability enables a processor to be upgraded or reconfigured giving
alternative functionality at little cost. For example, a digital filter can be reconfigured
from a high pass to low pass characteristic by loading in new software.

e Design times are reduced within the digital domain as DSP processors are
programmable.

e Chip areas are small and stay constant while additional features are added to the
processor within software. Increasing the order of an analogue filter, for example,
requires more components, whereas digital filters require only a few additional
program instructions.

1.3 The role of DSP

As we have already seen, DSPs are microprocessors that are specialised at
performing well in real-time digital signal processing applications. DSPs bridge the gap
between Application Specific Integrated Circuits (ASIC) designs and general purpose
microcomputers. For many engineers. DSPs combine the speed flexibility inherent in
ASIC with the convenience of an off-the-shelf programmable processor.

In real-time digital signal processing the main concern is with the amount of
processing that can be completed within a given time. The real-time processing power
which DSPs offer makes a wide range of applications within the telecommunications,
industrial and consumer markets feasible. The vast scope of end applications means
that any DSP family must be extensive, offering a wide selection of processing
characteristics. DSPs can be classified in the following ways:

e Embedded DSPs within automotive, consumer and telecommunications products
which:
e are inexpensive,
¢ have high volume applications - hard disk drives,
« feature cost and integration as significant factors,
= feature low power consumption - mobile applications,

« place less importance on ease of development and performance.

TMS320C5x DSK Applications Guide 3

Welcome to the DSP Starter's Kit

Cockpit Controller
Navigation Aids

Security Code
Motor Control IR & Ultrasonic
Radio Alarm

Starter, Alternator
Deskboard
Knock Control

. Electronic
Projectors Range teering Wheel

Controller

Radio Control

Anticollision Satellite

Control
Gear-Box Controller Electronic Clock

Climate Controller Multiplexing

Figure 2: Embedded DSPs within a car

e High Performance DSP systems which:

» have large data volumes and/or complex algorithms -such as in radar,
» have low production volumes,

« feature significant processing power,

« have a multiprocessing environment,

e are easy to use.

Figure 3: Video

4 Literature Number: BPRA0O63

Welcome to the DSP Starter's Kit

¢ PC Based DSPs for use on video and sound multimedia systems which:

are low-cost,

offer high performance,
enable high integration,
are capable of multitasking.

Figure 4: Modem

1.4 Texas Instruments DSP

1.4.1 TMS320 Family

The roots of Digital Signal Processing lie in the seventeenth and eighteenth centuries
when mathematicians first developed the algorithms that modern day processors
execute. Filtering, transforms and speech coding principles were all developed before
the technology was available to implement them. This made the first digital
applications highly specialised, with an associated cost that could rarely be justified.

The advent of the low-cost single chip DSP device from Texas Instruments changed
the situation. In the early 1980s the TMS320C10 processor from Tl enabled the
relatively simple implementation of high performance digital filters and other
mathematical functions which had real-time applications. The TMS320C10 won the
Electronic Products Magazine “Product of the Year” award in 1982.

As demands from users have increased, manufacturers such as Texas Instruments
have responded by providing ever more powerful processors at lower costs. In 1995
TMS320C80 with its highly advanced architecture and 7 separate processors on a
single piece of silicon won a ‘Byte Award'. Texas Instruments launched the world's
very first DSP and since then has pioneered the way with innovation and foresight.

The TMS320 family consists of different types of DSP processor which are suited to a
wide range of applications. The family covers many different applications from low-end
embedded DSPs used in automotive systems to telecommunications chip-sets used in

TMS320C5x DSK Applications Guide 5

Welcome to the DSP Starter’s Kit

applications such as mobile phones. Some examples of the wide range of applications
where TI's family members are used include:

¢ Music Systems - CD players,

o Toys - sound synthesis,

» VideoPhones - compression techniques for low transmission rates,

« Modems - high baud rates making Internet connections effective,

« Telephone - voice mail, mobile communications and answering machines,

« 3D graphics - real-time computation of graphics for virtual reality,

« Image Processing - finger print recognition, visual inspection and interpretation.

Videoconferencing
Multimedia

P $501S
Muitlpmce Graphics

Base station
Imaging

Control, Audio

Telecom,
Robotics
Networking (&

Base station
Cable modems, xDS
Graphics

g-POi nt

32.bit Floatin

Control, Telecom
Consumer Handset Base station
At e Telecom Base station |maging

16-bit Fixed-Poim

MPEG decoder
NTSC encoder

‘ Appucation Speciﬁc

1982 1997

Figure 5: TMS320 Family

The TMS320 family consists of 12 generations of processor, each with many family
variations which provide different combinations of peripherals, memory and packaging
options to suit their design.

The trends in DSP technology are lowering system cost, increasing processing power,
reducing power consumption and saving board space. Such developments are
making the DSP more viable in everyday applications. For this reason, it is important
for design engineers not only to be aware of DSP but to be competent when
developing DSP applications. DSPs will continue to play a central role in an expanding
range of products in a way similar to that of microprocessors and microcontrollers.

6 Literature Number: BPRA063

Welicome to the DSP Starter’s Kit

1.4.2 Texas Instruments DSP Firsts

Since the launch of TMS320C10, Texas Instruments has produced a number of DSP
‘firsts’, leading innovation, encouraging new applications, creating new markets. Most
of these firsts’ helped to turn new technologies into real applications. Here are a few
of them;

1981 Tl establishes DSP University Program to support interest in DSP technology

1982 Tl introduces the first programmable general-purpose DSP - the TMS320C10
operating at 5 to 10 million operations per seconds. Targeted markets include
modems and defence.

1984 Tl introduces a second generation DSP, the TMS320C2x

1985 Tl manufactures the first DSP using CMOS process technology
Tl introduces a technical hotline taking the lead in offering support to designers

1987 First DSP (TMS320C17)s used in consumer toys
Published text book - Digital Signal Processing with the TMS320 family

1988 Tl launches new range of processors for high performance applications
World's first DSP-based hearing aid uses the TMS320C1x

1989 Tl launches a new generation of processor - TMS320C5x

1990 T offers the first DSP C-source debugger and optimising ANSI C compiler
Tl launches the first starter kit based on the TMS320C2x generation

1991 Tl lowers the price of the TMS320C1x family to compete with microcontrollers
Tl sponsors the First Educators’ Conference for DSP educators and
researchers

1993 Tl publishes “A Simple Approach to Digital Signal Processing” text book
Tl forms the Software Co-operative with over one hundred Third Parties

1994 Tl launches the second starter kit based on the TMS320C5x processor

1995 Tl launches the Elite Lab. program to award distinguished electrical
engineering faculties with DSP tools
TMS320C2xx generation is launched achieving a new price-performance ratio
in the industry
TMS320C54x generation is launched, aimed at telecommunications
applications such as GSM
Tl launches a $100,000 (US) world-wide competition within universities for DSP
applications

1996 Tl publishes "DSP Teaching Kit" for Universities and self learning

1997 Most powerful DSP even designed: TMS320C6x delivers 1600 MIPS
Most powerful floating-point DSP Core: TMS320C67x delivers 1600 MIPS

1.5 DSP systems

1.5.1 Overview

The natural environment which we wish to interpret is analogue. Signals vary
continually with time and may take any value. The digital domain is fixed between two
values, high and low. Conversion from the analogue domain to the digital domain (and
back) is vital for sensing signals, manipulating them and reintroducing them to the

TMS320C5x DSK Applications Guide 7

Welcome to the DSP Starter's Kit

environment. This may seem troublesome, but the advantages gained from digital
manipulation justifies the conversion. Special devices which perform this conversion

are manufactured especially to interface with DSP processors.

1.5.2 Typical System

Typical Digital Signal Processing systems are commonly made up of the following

components:
» Analogue to Digital converter, A/D,
 Digital to Analogue converter, D/A,
 Memory, RAM,
« Digital Signal Processor, DSP,
e Memory, ROM.
real world digital world
RAM
: [T :
Raw data in —— A/D > ok <_
. | Digital Signal
Processor R
Modified data ‘ Core
ot € DA — ©
M

Figure 6: A typical DSP System

Figure 6 shows a typical DSP system. Let us follow a signal from the real world into
the DSP system. A continuous analogue signal, such as the output of a microphone,
is fed into the analogue to digital converter or A/D. The A/D performs sampling and
digitisation on the input signal. Sampling consists simply of taking snapshots of a
continuous signal at regular intervals. These data snapshots are then converted into a
series of ‘0’s and ‘1's to digitally represent the original signal. The rule in sampling is
that the samples must be taken at a rate which is at least twice the frequency of the
signal. Usually the sampling rate is set at a frequency slightly higher than twice the

signal frequency to ensure that the signal is correctly represented.

8 Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

1.4.2 Texas Instruments DSP Firsts

Since the launch of TMS320C10, Texas Instruments has produced a number of DSP
firsts’, leading innovation, encouraging new applications, creating new markets. Most
of these ‘firsts’ helped to turn new technologies into real applications. Here are a few
of them;

1981

Tl establishes DSP University Program to support interest in DSP technology

1982

Tl introduces the first programmable general-purpose DSP - the TMS320C10
operating at 5 to 10 million operations per seconds. Targeted markets include
modems and defence.

1984

Tl introduces a second generation DSP, the TMS320C2x

1985

Tl manufactures the first DSP using CMOS process technology

Tl introduces a technical hotline taking the lead in offering support to designers

1987

First DSP (TMS320C17)s used in consumer toys
Published text book - Digital Signal Processing with the TMS320 family

1988

Tl launches new range of processors for high performance applications
World'’s first DSP-based hearing aid uses the TMS320C1x

1989

Tl launches a new generation of processor - TMS320C5x

1990

Tl offers the first DSP C-source debugger and optimising ANSI C compiler
TI launches the first starter kit based on the TMS320C2x generation

1991

T! lowers the price of the TMS320C1x family to compete with microcontrollers
Tl sponsors the First Educators’ Conference for DSP educators and
researchers

1993

Tl publishes “A Simple Approach to Digital Signal Processing” text book
Tl forms the Software Co-operative with over one hundred Third Parties

1994

Tl launches the second starter kit based on the TMS320C5x processor

1995

Tl launches the Elite Lab. program to award distinguished electrical
engineering faculties with DSP tools

TMS320C2xx generation is launched achieving a new price-performance ratio
in the industry

TMS320C54x generation is launched, aimed at telecommunications
applications such as GSM

Tl launches a $100,000 (US) world-wide competition within universities for DSP
applications

1996

Tl publishes “DSP Teaching Kit” for Universities and self learning

1997

Most powerful DSP even designed: TMS320C6x delivers 1600 MIPS
Most powerful floating-point DSP Core: TMS320C67x delivers 1600 MIPS

1.5 DSP systems

1.5.1 Overview

The natural environment which we wish to interpret is analogue. Signals vary
continually with time and may take any value. The digital domain is fixed between two
values, high and low. Conversion from the analogue domain to the digital domain (and
back) is vital for sensing signals, manipulating them and reintroducing them to the

TMS320C5x DSK Applications Guide 7

Welcome to the DSP Starter's Kit

environment. This may seem troublesome, but the advantages gained from digital
manipulation justifies the conversion. Special devices which perform this conversion
are manufactured especially to interface with DSP processors.

1.5.2 Typical System

Typical Digital Signal Processing systems are commonly made up of the following
components:

« Analogue to Digital converter, A/D,
Digital to Analogue converter, D/A,
Memory, RAM,

Digital Signal Processor, DSP,
Memory, ROM.

real world '} digital world

§ RAM
1 :
Raw data in ——{ A/D > —ck 5
- | Digital Signal
: : Processor =
Modified data s Core
out) D/A [— O
: M

Figure 6: A typical DSP System

Figure 6 shows a typical DSP system. Let us follow a signal from the real world into
the DSP system. A continuous analogue signal, such as the output of a microphone,
is fed into the analogue to digital converter or A/D. The A/D performs sampling and
digitisation on the input signal. Sampling consists simply of taking snapshots of a
continuous signal at regular intervals. These data snapshots are then converted into a
series of ‘0's and ‘1's to digitally represent the original signal. The rule in sampling is
that the samples must be taken at a rate which is at least twice the frequency of the
signal. Usually the sampling rate is set at a frequency slightly higher than twice the
signal frequency to ensure that the signal is correctly represented.

8 Literature Number: BPRA0O63

Welcome to the DSP Starter's Kit

Analog Signal

010 on 010 Assigned Digital Equivalent

'

U

samples
D_/___

A->D

Processor
Transducer

Figure 7: Sampling Process

Figure 7 shows the sampling process of a sinusoidal input wave form. At regular time
intervals, the sine wave is sampled. A binary code is then assigned to the sample,
reflecting its magnitude. In this example a three bit code is used. This series of digits
(010 011 010 001) now represents half a period of the sine wave. By representing the
other half of the period in the same way a full digital representation of the signal is
created.

Following A/D conversion, the digitised input signals are read into the processor and
modified according to a set of predefined rules which is known as the program. With
an architecture suited for very fast calculations, the DSP is capable of reading,
modifying and outputting a fast stream of input data.

After processing, the digitised signal is passed out of the processor to a digital to
analogue converter or D/A. This device converts the digital code from the DSP back to
an analogue equivalent, effectively the opposite of A/D. The signal is now ready for
the ‘real’ world.

In most cases, it is the accuracy and speed of A/D and D/A converters that determine
the performance and quality of many DSP systems.

While the three core components of a digital system have already been described,
supporting devices are also essential. In Figure 6 the block RAM (Random Access
Memory) represents volatile memory only holding data when the power is on. A DSP
system may have a number of such blocks. Memory is used to hold program
instructions, data and even coefficients which are all used within program execution.

ROM (Read Only Memory) is a permanent location for program and data values.
ROMs hold data even when the power is turned off. Many DSP based systems use an
EPROM which is an Electrically Programmable ROM for storing information. When the
DSP is powered up, the EPROM contents are loaded into the DSP RAM. The program
then executes from the on-chip RAM. This ensures faster execution of instructions as
access to on-chip RAM is faster.

TMS320C5x DSK Applications Guide 9

Welcome to the DSP Starter's Kit

Some DSPs have on-chip ROM which can be used to store programs. Once the
software is tested and proven, it can be put into DSP's on-chip ROM by using a mask
during the manufacturing process. This method is only cost justifiable for high volume
production. It reduces the required board area and the number of external
components in a given design.

All DSP systems require a clock which provides timing for internal operations of the
processor. This is represented by ‘clk’ in Figure 6. The DSP’s actions are governed by
the rising and falling edges of the clock. The speed of the clock is typically in the MHz
region.

1.6 Welcome to the TMS320C5x DSK

1.6.1 Overview

After their initial launch in 1990, Texas Instruments’ family of DSP Starter's Kits (DSK)
have proved themselves to be an essential industry. In the past, evaluating a DSP
required a significant investment for an entry-level hardware-development platform.
Now the ground breaking DSK is making DSP accessible to everyone for only US$99.

The simple, useful hardware provides the user with the freedom to create and run
programs. DSK may also be easily expanded as all signals are on accessible pin
headers. The kit combines assembler and debugger software to provide an easy-to-
use development environment. Some of the TMS320C50 DSK's features include:

e 40 MHz TMS320C50 DSP with 10k x 16 words of on-chip RAM,

e TLC320C40 Analogue Interface Circuitry (AIC) with 14 bit resolution (single chip
A/D + D/A),

e RS232 serial port for PC connection,

» Two standard RCA jacks for direct communication to analogue devices,

¢ On-board EPROM that allows the DSK to communicate with a PC.

1.6.2 A walk around the DSK board

Figure 8 shows the DSK board. A more detailed circuit diagram is included in
Appendix A of DSK User’s Guide that is supplied with the DSK. This is useful when
expanding memory or adding new peripherals to DSK.

Let us now look at each component of the DSK.

Literatur2 Number: BPRA063

Welcome to the DSP Starter's Kit

e i Boot ROV

lossesisesel] [fecsesececet

> DB9 TMS320C50

AIC

gpooooooo

>{'.i-ooo-oo-ol 05C | =
(XA XXX E XXX

R xxxxxl
XXX -
[:____ X- i3 b

P ALlC

Figure 8: DSK Board Layout

1 - Boot ROM
The Boot ROM is an external source of program information.

The DSK has a 32K x 8-bit ROM that stores the instructions necessary to interface the
DSK with a host PC for software loading and running the debugger. This program is
called the ‘communications kernel' or ‘kernel' for short. The kernel program is loaded
into RAM on boot-up. a process that is initiated by the DSP chip on reset. After
downloading its contents to the processor, the Boot ROM cannot be accessed.

We shall talk about the boot-up sequence in more detail at the end of this chapter.

2-JP3

The JP3 header is a set of 24 pins (12 x 2) that provide the DSK user with easy
access to the address lines and a number of interrupt signals of the TMS320C50. The
address lines are used for reading and writing information on and off-chip. The
TMS320C50 device has 224K x 16 bit maximum addressable external memory space.
This external memory space is organised as 64K program, 64K data, 64K peripheral
and 32K global memory.

Access to these pins means that the DSK is an expandable platform for larger DSP
applications. External memory and other peripherals can be built on a separate board
and linked to DSK via the various JP headers.

TMS320C5x DSK Applications Guide 11

Welcome to the DSP Starter’s Kit

3-JP2

The 24 pin header labelled JP4 provides access to data lines (D0-D15) of the
processor and a number of control signals. This header would be used together with
other pin headers for board expansion.

4 - Serial Output Jack - OUT

The RCA jack connects the output of the D/A converter with the real world. This
analogue interface enables a simple standard link to be made between the DSK and
laboratory equipment such as a Cathode Ray Oscilloscope (CRO) or an amplified
speaker. The signal is sufficient to give an audible output from a small, reasonably
sensitive 8Q loudspeaker. Please note that the serial output jack is labelled on the
PCB as "OUT".

5 - Power Rectifier

The board is supplied with 9V AC linear power rectification circuitry that supplies the
DSP and auxiliary units with the correct power supply.

Input: 9V ac 250mA
Output: +5V dc regulated
+12V dc unregulated

6 - AC power supply Input
The DSK requires a 9V ac power supply which must be supplied via a 2.1 mm jack.
We recommend* the output should be:

9V ac

250 mA min

50/60 Hz

7 - XDS Header - JP1

The DSK also provides designers with a facility to use TI's Extended Development
System (XDS) to emulate the processor. The XDS performs boundary scan emulation
through JTAG. This type of facility, available on such a low-cost product is
unprecedented within the industry.

JTAG scanning logic is for testing and emulation purposes only. It can be used to test
pin to pin connectivity as well as performing operational tests on peripheral devices
surrounding the TMS320C50. JTAG also interfaces with other internal scanning logic
circuitry providing access to all of the on-chip resources. The emulation port conforms
to a subset of IEEE 1149.1 JTAG standard.

8-JP5

The JP5 header is used to access the processor's handshaking and clocking signal
pins that are used for interfacing external devices to the board.

* Texas Instruments will not accept liabilin: for amy damage caused by an incorrect power supply.

12

Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

9 - TMS320C50

The TMS320C50 is the DSP processor at the heart of the DSK. We shall talk about
the architecture and properties of 'C50 later on in this chapter. The processor is
supported by auxiliary devices on the board such as an oscillator, A/D D/A converters
and a power rectifier. Although there is no external memory on the board, the 10K on-
chip memory (RAM) is sufficient to run many DSP applications software.

10 - RS232 Port

The DB9 RS232 connector mounted on the board connects the DSK with a PC via a
standard RS232 cable. The cable should use straight connections and no cross over
is required. The link is used for downloading data to the processor, for debugging and
can be programmed as a two way link with the PC to exchange program data, for a
graphic display or user interface.

RS232 requires: TX, TR, DTR, Ground
+5V min into 600

DSK User's Guide has a full description of the port. We shall talk about the operation
of this port in detail in a later chapter.

11- Oscillator

The system clock provides the processor with its timing signal. It is the heart beat of
the processor and runs at 40MHz.

12 -JP4

The 24 pin header provides access to control and data signals for the serial port. This
pin header would typically be used for building multiprocessor ‘C50 systems and for
extending the capabilities of the existing serial port.

13 - Analogue Interface Circuitry - AIC

The AIC provides the necessary conversion between the analogue and digital domain.
It incorporates A/D, D/A and filters, all on a single chip. With a maximum sampling rate
of 19.2kHz, the TLC320C40 is a general purpose device that is suited for applications
such as telecommunications, data capture and voice processing.

Most functions of the AIC are configurable in software with the AIC usually connecting
to the serial port of the ‘C50. The DSK User's Guide contains a data sheet for the AIC
within Appendix B. We shall be using and programming the AIC extensively.

14 - Serial Input Jack - IN

The RCA jack connects the input of the A/D converter with the real world. The
analogue interface enables a simple standard link to be made between the DSK and
either laboratory equipment, such as a signal generator, or a microphone. In some
cases microphones do not generate the signal level necessary for the A/D to detect
and convert the signal. Using a dynamic or pre-amplified microphone ensures that the
appropriate signal level is achieved. Please note that the serial input jack is labelled
on the PCB as "IN".

TMS320C5x DSK Applications Guide 13

Welcome to the DSP Starter’s Kit

1.7 Digital Signal Processors

1.7.1 Overview

All digital processors consist of several fundamental modules:

e a processing unit to perform mathematical and logical operations,
« memory to store data and program instructions,
e a bus structure for efficient transfer of data and program.

As for any stored-program machine, a processor must be told what operation to
perform in every machine cycle. Typically, a processor fetches an instruction and
some data from memory, operates on this and then returns the manipulated data to
storage. Instructions, data fetches and returns are performed in different ways by
processors with differing architectural structures. Primarily two architectures are
prominent within the semiconductor industry: Von Neumann and Harvard. It is the
application that usually governs the type of architecture to be employed together with
memory and peripheral requirements.

1.7.2 Architecture Types

14

It is the Von Neumann architecture that has set the standard for computer
development over the past forty years. Essentially, the architecture is very simple with
both program and data residing in the same memory mapped space. Figure 9 shows
the organisation of a typical Von Neumann architecture processor.

The disadvantage with this architecture is that there is only one communication
channel to memory, memory holds both data and program words. Therefore to access
data, first the instruction must be fetched, then the processor can fetch data.
Therefore data accesses take a minimum of two machine cycles. Von Neumann
architecture forms the basis of many processors such as the 80x86 and 68xxx ranges
which are more suitable for general purpose computing.

Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

VON NEUMANN
MACHINE
. PROGRAM
rourmm L CONTROL [ARITHMETIC
PROGRAM |oq . THVE
I;\l:\l"lg\ 1 INPUT UNIT
. OUTPUT b
HARVARD
ARCHITECTURE
. PROGRAM
g CONTROL
STORED Ebublibielll E
' —————— | INPUT | g | STORED
PROGRAM | ARITHMETIC | | ouTpPUT | | DAtk
LoGIC ;
' UNIT ';

Figure 9: Von Neumann and Harvard Architecture

Where fast data manipulation is vital, accessing both program and data memory in a
single machine cycle is advantageous. In such an architecture, data accesses do not
need to wait for instruction fetches. This type of architecture, where program and data
memory are separate, is named Harvard. The lower portion of Figure 9 shows the
structure of Harvard architecture. Having two buses to serve each address space
ensures that data and program accesses occur in parallel, increasing the operational
processing speed. Unfortunately, any increase in processing power comes with a cost
penalty. Two memory spaces require twice as many addresses and data pins. The
more the pins on the chip, the higher the cost of the chip. An elegant solution is to
make the processor internally Harvard but use a single data and address bus to
access the external world. In other words, internally have all the advantages of the
Harvard architecture but externally reduce the number of pins used. Many of the DSP
processors supplied by Texas Instruments use this "modified" Harvard architecture to
reduce cost for the customer while maintaining speed within the processor.

Some of the more common features within a typical modified Harvard architecture
DSP chip are listed below:

¢ [nternally separate program address, program data, data and data address buses,
e A central arithmetic unit where mathematical and logical operations are performed,

TMS320C5x DSK Applications Guide 15

Welcome to the DSP Starter’s Kit

e An auxiliary arithmetic unit which is used to perform mathematical and logical
operations whilst the central arithmetic unit is occupied,

e Serial ports for high speed communication with other DSPs, data converters and
the outside world in general,

e On-chip data and program memory, avoiding frequent accesses to external
memory. External memory generally takes longer to access which slows down the
operational speed of the DSP.

1.7.3 The need for speed

The main concern for signal processing and real-time algorithms is the amount of
processing that can be achieved in a given period of time. Most signal processing
algorithms involve a multiply and an add operation which can be written as follows in
its general form:

A=BC+D

This operation is typically named as MAC, Multiply and ACcumulate. The addition
function is quite simple and can be performed in a single clock cycle. The same is true
of subtraction. Where most computers subtract by negating one number and then
adding it to the other. However multiply functions take much longer. A general purpose
processor may take several hundreds of clock cycles to implement such a calculation.
The reason behind this is that most general purpose processors implement multiply as
a series of add instructions.

What is needed is a machine which can perform a multiply and an add in just one
clock cycle. For this the processor would need to have a hardware multiplier capable
of producing a result in a single machine cycle. Further, the processor should be
capable of performing an add operation in the same cycle. DSPs have hardware
multipliers and are hardwired for completing a multiply and an add within a single
clock cycle. It is this silicon base that allows the execution of MAC instruction in a
single clock cycle in DSPs giving the real-time performance advantage.

Pipelining is an additional method of speeding up the instruction throughput of a
processor. The simplest analogy is that of a car production line. It might take 10 hours
to assemble a complete car, but because the construction of the car is broken down
into a number of subsections, a car might be finished every 10 minutes. Similarly,
processor instructions can be broken down into stages such as fetching the
instruction, decoding the instruction, fetching any data, executing the instruction, and
storing the result. The net result is that the core processor never needs to wait for an
instruction fetch once the pipeline is full.

1.7.4 Fixed-Point and Floating-Point

16

DSP processors can be categorised into two distinct groups: floating-point and fixed-
point. Each has a different architecture which is beneficial for different applications.

e Fixed-point DSP processors represent a number in a fixed range with finite
precision. For example, a 16 bit processor will give + 2° range and a precision of 1

Literature Number: BPRA0O63

Welcome to the DSP Starter's Kit

in 32768. The earliest DSPs were based around this technology and for the
majority of applications today, the industry chooses 16 bit fixed point processors.
The price advantage of fixed point 16 bit processors is significant.

¢ Floating-point DSP processors are much more recent. They express numbers as a
mantissa lying between +1.0 and -1.0 combined with a scaling function called the
exponent. This method of representation gives a greater dynamic range and
therefore reduces the chance of overflow. Signal processing algorithms are much
easier to implement on floating-point processors and are therefore more suited to
optimising high level language compilers. However, this type of processor tends to
be slower and more expensive than its fixed-point counterpart.

1.7.5 Typical Fixed-Point DSPs

A typical fixed-point DSP consist of a core unit, program memory, data memory and
peripherals. A simplified block diagram of such a DSP is shown in Figure 10. The
internal architecture of the processor is Harvard because there are separate program
and data memory areas.

program data ivheral
memory memory peripherats
program hus [— § l E l
data read bus ; T I .
data write bus | l
DSP core
logical operations| multiplication
registers
and shifting
control

Figure 10: Typical Fixed-Point DSP

Essentially the processor is split up into two parts; the memory and the core. Memory
is divided again into program and data memory. Program memory holds the series of
instructions that the processor executes. Data memory holds constants, coefficients
and the results from program execution. Splitting memory into two such blocks means

TMS320C5x DSK Applications Guide 17

Welcome to the DSP Starter's Kit

that the two areas can be accessed within the same clock cycle, increasing the
processor performance significantly.

The core is the heart of the DSP. All the calculations such as adding, subtracting,
multiplication, shifting and logical operations are performed in the core. Most DSP
cores have a large degree of parallelism whereby a number of operations can be
performed simultaneously.

The internal hardware of the DSP executes functions that other processors typically
implement in software or in micro-code. For example, the device contains hardware
for single cycle 16 x 16-bit multiplication, data shifting and address manipulation. This
hardware-intensive approach provides the processing power previously unavailable on
a single chip.

The constituent parts of the processor are all connected together by a series of wires
which are referred to as the buses. In modified Harvard architecture, DSPs program
and data memory require two separate buses, one for each area of memory. Figure
10 depicts such a configuration. Data memory in this particular case has two buses:
data read and data write. This structure is another speed enhancing feature of the
Harvard architecture. For a memory which has dual access capability, these buses are
used to read from and write to the same memory in the same instruction cycle. The
program bus channels instructions from program memory. The bus structure also
connects the core and memory to on-chip peripherals.

Peripherals connect the processor to the off-chip digital and analogue devices.
Providing the link to other processors or data converters is essential. It is this link that
supplies the core with the data input and sends modified data out. Different DSPs
have a different set of peripherals, depending on the target application. Most DSPs
have a peripheral to connect to data converters so that sampled data can be passed
in and out of the processor with ease.

1.8 A walk around the TMS320C5x Processor

1.8.1 Overview

The DSK features the TMS320C50 16 bit fixed-point DSP. The processor offers
unprecedented affordability, performance, integrated memory and power management
features which have led it to become an industry standard. It is in millions of everyday
products such as cellular telephones and modems.

Key Applications
Cellular/cordless phones

High speed modems

Personal communications

Sound systems, voice processing
Laser printers and copiers
Multimedia applications

Hard disk drives

Key Specifications

40 MIPS performance

Flexible power down modes
Compatible with TMS320C 1x/2x/2xx
On-chip emulation

Enhanced instruction set

10K words RAM

18 Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

program’‘data program scan based
RAN ROM cmulation
bus
—
_ 16x 16 arithmetic M
é multiplicr lugfc shifter
g unt et DM serial port
2
&
5
2
A status |\’L‘i(
registers registers unit
aeenps| Parallcl 1'O ports
Figure 11: TMS320C50
1.8.2 Memory

Figure 11 shows the simplified internal structure of TMS320C50.

Program/Data RAM

The contents of RAM can be both read from and written to an infinite amount of times,
making the RAM ideal for storing data and temporary program information. Having on-
chip RAM offers a significant performance advantage as it faster to access on-chip
memory than going off-chip.

Certain sections of RAM can be configured as program or data memory. This feature
offers another significant advantage to the user where depending on the application, a
smaller RAM area can be allocated for program and a larger section for data or vice
versa. Itis such flexible features that make the ‘C50 popular in many applications.

A section of on-chip RAM is designed as Dual Access RAM (DARAM). This area can
be written to and read from simultaneously in a single clock cycle. In some signal
processing applications, such a feature has a significant impact on the processing
speed of algorithms.

Usually on start up, RAM is downloaded with the necessary configuration information,
program and data from an external device. Then the program starts executing from
on-chip RAM.

TMS320C5x DSK Applications Guide 19

Welcome to the DSP Starter's Kit

Program ROM

‘C50 has 2K words of boot ROM. The boot ROM includes a divide functionality test
and boot code. Other members of the ‘C5x family have differing sizes of on-chip ROM
and some have maskable ROM which is used to hold application software. It saves
additional board space required for external ROM. Such designs also are more
compact and use less power. Once the application has been developed and tested,
the software can be sent to Texas Instruments to be masked onto the ROM. The 'C5x
is then manufactured with the application on-chip. This approach is suitable for very
high volume production.

1.8.3 The Core

The enhanced TMS320C50 core retains compatibility with other members of the
TMS320 family, namely the TMS320C1x and TMS320C2xx generations. The core is
capable of performing high-speed arithmetic executions within a short cycle because
of its parallel architecture, having the following main components:

16 x 16 multiplier

The fast on-chip fixed point multiplier allows the device to perform fundamental DSP
operations such as convolution, correlation and filtering with optimum efficiency. The
multiplier unit performs a 2's complement 16 by 16 multiplication of two binary
numbers, which yields a 32 bit signed result. The unit has three major elements:

TREG - a temporary register that holds the muitiplicand
PREG - a product register that stores the product
multiplier array - the unit that performs the calculation

Arithmetic Logic Unit (ALU)

The 32 bit ALU together with the accumulator performs general purpose 2's
complement arithmetic operations such as addition and subtraction as well as Boolean
operations like ANDing and ORing. The output of the ALU is passed to the
accumulator.

Shifter

The shifter unit's input is connected to the data bus and the output is connected to the
ALU. The unit provides both left and right shifts, filling the least significant bits with
zeros. The device is essential when using number formats such as Q15, and to
prevent overflow. We shall consider Q15 format in the next chapter.

Accumulator

The accumulator is a general purpose register that serves as a 32 bit storage facility.
The accumulator is a universal storage register between the multiplier, the memory,
the ALU and the shifter. For fast temporary storage, the accumulator has an
associated buffer which is also 32 bits in length.

The accumulator is accessible in two parts, the upper half (ACCH) and the lower half
(ACCL) which gives the programming flexibility.

20 Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

Auxiliary Registers

The TMS320C50 has 8 auxiliary registers labelled ARO to AR7. They can either be
configured as temporary storage or for indirect addressing. Indirect addressing uses
the auxiliary registers as pointers to areas of memory. They can then be incremented
or decremented with relative ease, allowing a series of sequential memory accesses.
Auxiliary registers also have an Auxiliary Register Arithmetic Unit (ARAU), allowing
parallel address calculations while the central ALU is busy with other operations.

Status and Control Registers

The TMS320C50's four status and control registers hold and toggle settings which
govern the functionality of the processor:

« Status Register 0 (ST0),

» Status Register 1 (ST1),

* Processor Mode Status Register (PMST),

» Circular Buffer Control Register (CBCR).

Different modes can be switched on and off by setting bits within the various registers
to one or zero. The registers can be directly written to, enabling the whole processor
to be reconfigured efficiently. TMS320C5x User's Guide has detailed information on
bit settings in these registers in Chapter 3. We shall explain these bit settings in later
chapters as we use them in our programs.

Parallel Logic Unit (PLU)

The parallel logic unit or PLU performs logical operations on data without affecting the
contents of the accumulator. Bil manipulation operations such as setting, clearing and
testing can all be executed in parallel with the main function of the code. Bit
manipulation means that status registers can be altered immediately without
degrading performance.

TMS320C5x DSK Applications Guide 21

Welcome to the DSP Starter’s Kit

1.8.4 Internal Registers

Registers in the ‘C5x family are organised into two main sections: internal registers
and memory mapped registers. Functionally, there is no difference between the two
types of register. The following table lists the internal registers.

Table 1: Internal Registers

Name Symbol Function
ACCumulator ACC A 32-bit accumulator accessible in two 16-bit halves
ACCH | Accumulator is used to store the output of ALU
ACCL

ACCumulator Buffer ACCB | A register used to temporarily store the 32-bit
contents of the accumulator

Prescaler Count COUNT | A 4-bit register that contains the value for the

Register prescaling operation. BIT and BITT instructions
operate on this register

Product REGister PREG | A 32-bit register used to hold the multiplier's output.

Program Counter PC A 16-bit program counter used to address program
memory

RePeat CounTer RPTC | A 16-bit counter used to control the repeated
execution of a single instruction

Stack STACK | An 8x16-bit hardware stack used to store the PC
during subroutine calls and interrupt service routines

STatus Registers STO Two internal status registers that hold status and

ST1 control bits. There are two more status registers
which are memory-mapped; PMCR and CBCR

1.8.5 Memory-Mapped Core Processor Registers

Twenty-eight core processor registers are mapped into the data memory space. They
are listed in the table 2. Assembly language instructions refer to the register by its
name. The second column shows the address of the register in data memory space.
Since these registers are memory-mapped, it is the actual address where they reside.
The third column is the description of the register. The name of the register is usually
an acronym related to this description.

These registers play an important role in the behaviour of the processor. The most
commonly used registers are IMR, IFR, PMST, TREGO, AR0-7 and INDX.

22 Literature Number: BPRA063

Welcome to the DSP Starter's Kit

Table 2: Memory-Mapped Core Processor Registers

Name Address Description
Dec | Hex
0-3 | 0-3 | Reserved
IMR 4 4 | Interrupt Mask Register
GREG 5 5 | Global Memory Aliocation REGister
IFR 6 6 | Interrupt Flag Register
PMST 7 7| Processor Mode Status Register
RPTC 8 8 | RePeaT Counter Register
BRCR 9 9 | Block Repeat Counter Register
PASR 10 A | Block Repeat Program AccesS Register
PAER 11 B | Block Repeat Program Address End Register
TREGO | 12 C | Temporary REGister Used for Multiplicand
TREG1 | 13 | D | Temporary REGister Used for Dynamic Shift Count (5 bits only)
TREG2 | 14 E | Temporary REGister Used as Bit Pointer in Dynamic Bit Test
(4 bits only)
DBMR 15 F | Dynamic Bit Manipulation Register
ARO 16 10 | Auxiliary Register Zero
AR1 17 Il | Auxiliary Register One
AR2 18 12| Auxiliary Register Two
AR3 19 13 | Auxiliary Register Three
AR4 20 14 | Auxiliary Register Four
AR5 21 15 | Auxiliary Register Five
ARB 22 16 | Auxiliary Register Six
AR7 23 17 | Auxiliary Register Seven
INDX 24 18 | INDeX Register
ARCR 25 19 | Auxiliary Register Compare Register
CBSR1 | 20 1A | Circular Buffer 1 Start Register
CBER1 | 27 1B | Circular Buffer 1 End Register
CBSR2 | 28 IC | Circular Buffer 2 Start Register
CBER2 | 29 1D | Circular Buffer 2 End Register
CBCR 30 IE | Circular Buffer Control Register
BMAR 31 1F | Block Move Address Register

1.8.6 Interrupts

Interrupts are exceptions. The processor can be interrupted from its normal
processing either by an external hardware signal or by a software instruction. The
processor checks whether there has been an interrupt after every instruction. If there
has been an interrupt, the program counter is loaded with the address of the
appropriate Interrupt Service Routine (ISR) and the processor starts executing
instructions in ISR until a RETE or RETI instruction is executed.

The following table shows 'C50 interrupts. The (!) symbol means that the signal is
asserted when low.

TMS320C5x DSK Appiications Guide

23

Welcome to the DSP Starter's Kit

Table 3: 'C50 interrupts

Label Function
'RS External reset interrupt Highest priority
INMI Nonmaskable interrupt
IINT1 External user interrupt 1

lINT2 External user interrupt 2
'INT3 External user interrupt 3
TINT Internal timer interrupt Increasing priority
RINT Serial port receive interrupt
XINT Serial port transmit interrupt
TRNT TDM port receive interrupt

TXNT TDM port transmit interrupt
INT4 External user interrupt 4 Lowest priority
TRAP Trap instruction vector

When an interrupt is executed, the following registers are saved automatically. This is
called a context save.

Table 4: 'C50 Interrupt context save

PC Program Counter

ACC Accumulator

ACCB Accumulator buffer

PREG Product register

STO Status register 0

ST1 Status Register 1

PMST Processor Mode Status Register
TREGO | Temporary register for multiplier
TREG1 | Temporary register for shift count
TREG2 | Temporary register for bit test
INDX Indirect addressing index register
ARCR Aucxiliary register compare register

Program counter is saved on 8-deep internal hardware stack. The same stack is
used for subroutine calls. Therefore care must be taken when calling subroutines
from within interrupt service routines. The rest of the registers are pushed onto a
one-deep stack. Because of this one-deep stack, the ‘C50 does not support
nested interrupts.

1.8.7 Peripherals

Peripherals interface the core of the processor with off-chip devices. The effectiveness
of the peripherals are vital to the efficient operation of the processor. Slow peripherals
may limit the performance of the DSP by creating a bottleneck. The TMS320C50 has
a number of highly specified peripherals capable of operating in harmony with the core
processor to give efficient communications.

24 Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

Scan-Based Emulation

The JTAG scanning logic is used for testing and emulation purposes only. The JTAG
scan logic provides the boundary scan to and from the interfacing devices. It can be
used to test pin to pin connectivity as well as performing operational tests on
peripheral devices surrounding the TMS320C50.

The dedicated emulation port is a subset of IEEE 1149.1 JTAG standard which can be
accessed by using the XDS510 emulator from Texas Instruments.

The processor JTAG output pins are mirrored on the DSK board for easy access.
Serial Port

The serial input/output port connect the processor with off-chip serial devices such as
AICs for high speed serial interfacing. This port is extremely important, and probably
the most frequently used in all DSP applications.

The serial port is synchronous, full duplex and double buffered to aid efficiency.

Time Division Multiplexed (TDM) Serial Port

Time Division Multiplexed Serial Port is used in multi-processor systems for inter-chip

communication. This port allows the device to communicate with up to seven other
‘C5x devices processor.

Timer
The processor incorporates a 16 bit user programmable timing circuit which gives a
divide down ratio of a % to 1_17 The timer can be stopped and started, set and reset

all within the software. The internal timer can be used to supply a master clock signal
to peripheral devices such as an AIC.

Software Wait States

The wait state generator enables the processor to interface slower off-chip memory
without the need for external hardware. The processor can be made to wait 1, 2, 3 or
7 cycles, allowing external memory to keep pace with the DSP. Wait states are
controlled by a set of registers.

Parallel I/0 Ports

The TMS320C50 has 64K I/O ports (parallel input/output ports) which are addressed
through the command set. The processor can easily interface with external devices
requiring minimal off-chip decoding circuits.

Powei l‘v‘mllagcmwﬁ

Power management circuitry puts the processor into power-down mode reducing the
power consumption substantially when it is not actively used. This is very useful in
portable equipment and helps the lifetime of the battery. Power-down mode can be
initiated by external signals or by executing certain instructions.

TMS320C5x DSK Applications Guide 25

Welcome to the DSP Starter's Kit

1.8.8 Memory-Mapped Peripheral Registers

Peripheral circuits are operated and controlled through access of memory mapped
control and data registers. The operation of serial ports, timer and wait state
generators are all controlled through these memory-mapped peripheral registers.
These are listed in the following table. The first column is the name of the register the
second column is the address of the registers in the data memory space. We shall be
using some of these registers in the programs fzatured within this guide.

Table 5: Memory-Mapped Peripheral Registers

Name Address Description
Dec Hex
DRR 32 20 Data Receive Register
DXR 33 21 Data Transmit Register R
SPC 34 22 Serial Port Control Register
35 23 Reserved]
TIM 36 24 Tlmer Register
PRD 37 25 Period Register
TCR 38 26 Timer Control Register
39 27 Reserved
PDWSR 40 28 Program/Data S/W Wait-State Register
IOWSR 41 29 110 S/W Wait-State Register
CWSR 42 2A | S/W Wait-State Control Register o
43-47 | 2B-2F | Reserved

TRCV 48 30 (Time Division Multiplex) TDM ReCeiVe Data Register
TDXR 49 31 TDM Transmit Data Register
TSPC 50 32 TDM Serial Port Control Register
TCSR 51 33 TDM Channel Select Register o
TRTA 52 34 TDM Receive/Transmit Address Register
TRAD 53 35 TDM Received ADdress Register

For more information on the architecture of the TMS320C50 processor please refer to
the processor User's Guide that is supplied with the DSK.

1.9 Introduction to Assembly Language Instructions

1.9.1 Overview
The ‘C5x instruction set is designed to support numerically intensive signal processing
applications. The instruction set provides six basic memory addressing modes:

e Direct,

Indirect,

Immediate,
Dedicated register,
Memory-mapped register,
Circular.

26 Literature Number: BPRA063

Welcome to the DSP Starter's Kit

In the following sections, we shall consider some examples of each of these
addressing modes.

1.9.2 Direct Addressing Mode

This mode uses the Data Memory Page Pointer (DP) register. This is an internal
processor register which is not memory mapped. The DP is 9-bits long, providing
MSBs of data memory address to a direct addressing mode instruction. The DP
divides the data memory space into 512 pages of 128 words. Figure 12 shows the
paging arrangement using the DP. The Data Page Pointer is not initialised to Zero on
Reset, therefore the contents of the DP is not defined on Reset.

/ DP = 512 ————# ————— \

DP=2—»

o : |

128
WORDS

\ TOTAL MEMORY 64K WORDS j

Figure 12: Data Memory Page Pointer (DP)

Let us consider an example.
AND DAT16 ; DP is currently pointing to page 4

This instruction will logically AND the contents of the memory location at 210h with the
contents of the accumulator. The address caiculation is as follows;

210h = 528d = (4 pages x 128 bytes each) +16 (DAT16)

TMS320C5x DSK Applications Guide 27

Welcome to the DSP Starter’s Kit

AND DAT16 ;DP =4 BEFORE ‘AND’ AFTER ‘AND’
DATA MEMORY AT 210h | 00FFh| | 00FFh]
Acc | 12345678h | [00000078h |

Figure 13: The operation of a Direct Memory Addressing Instruction

Other examples of Direct Memory Addressing Mode instructions include:

ADD adds contents of ACC to the contents of the pointed data memory location

OR Logically ‘OR's the contents of ACC with the contents of the pointed data
memory location

LST Load Status Register with the contents of the pointed memory location.

The above instructions can also be used with some other addressing modes. Chapter
4 of TMS320C5x User's Guide has detailed explanation of each instruction and a
short summary of the whole instruction set. A brief study of this chapter will help you to
familiarise yourself with the instruction set before we start programming in the next
chapter.

1.9.3 Indirect Addressing Mode

This is the most complex addressing mode in the ‘C5x. Eight auxiliary registers, ARO-
AR7, provide the pointing mechanism for this mode. The following figure shows the
arrangement of auxiliary registers.

(Data Bus Auxilary Registers \

I} AR 0
\i Y AR 1
| ARB (3) }4—] ARP (3) |— AR2
(ARP = 2) AR3
AR 4
AR5
AR®
AR7
ARB Auxilary Register Buffer Pointer A

ARP Auxilary Register Pointer Y

ARAU

Q?AU Auxilary Register Arithmetic Unit /

Figure 14: Auxiliary Registers

28 Literature Number: BPRA0O63

Welcome to the DSP Starter’s Kit

An auxiliary register is selected by loading Auxiliary Register Pointer (ARP) with a
value from 0 to 7. The contents of auxiliary registers are operated on by the Auxiliary
Register Arithmetic Unit (ARAU). ARAU implements increments and decrements, and
performs other arithmetic operations on the auxiliary registers. The Load Auxiliary
Register (LAR) instruction loads the address into the current auxiliary register.
AR(ARP) denotes that the auxiliary register is to be selected by ARP.

The following instructions operate on the auxiliary registers:

ADRK: Add to auxiliary register short inmediate

SBRK; Subtract from auxiliary register short immediate

MAR; Modify auxiliary register

Aucxiliary registers may also be loaded by using memory-mapped writes to the auxiliary

registers. However the use of this mode requires some care. The ‘C5x User's Guide
has more detailed information in chapter 4 about indirect addressing mode.

The indirect addressing mode uses a number of symbols. These are best
demonstrated by examples.

Example 1:
ADD "+, 8

* means that the contents of AR(ARP) are used as the data memory address. +
autoincrements the current auxiliary register by 1 after the instruction is executed. 8
means that the data at the memory location pointed to by the contents of the current
auxiliary register is left shifted by 8 bits before addition. The instruction adds to the
accumulator the contents of the data memory location pointed to by the contents of
the current auxiliary register after left shifting this data by 8 bits. The current auxiliary
register is autoincremented after the instruction.

4 ADD *+, 8 BEFORE ‘ADD’ AFTER ‘ADD’
Arp | 4] [a]
AR4 L 0982h] [0983h]
DATA MEMORY 0982h | 0002h] [0002h]
Acc | Zh] [0202h])

o

Figure 15: The operation of an indirect memory addressing instruction

Example 2:
ADD *, 8
Same as example 1 but no increment of the auxiliary register.

TMS320C5x DSK Applications Guide 29

Welcome to the DSP Starter’s Kit

Example 3:
ADD *-, 8
Same as example 1 but the auxiliary register is decremented after the instruction.

Example 4:
ADD *0+, 8

0 means that INDX register is used in the address calculation. In this case the
contents of INDX is added to the current auxiliary register.

Example 5:

ADD *0-, 8

Same as example 4 but the contents of INDX is subtracted from the current auxiliary
register.

Example 6:

ADD *+,8,AR3

Same as in example 1 but the ARP is loaded with the value 3 for subsequent
instruction.

Example 7:

ADD *BRO-, 8

BR stands for Bit Reversed. Same as example 5 but the contents of INDX are
subtracted from the current auxiliary register with reverse carry propagation. This
instruction is very popular in performing FFTs.

Example 8:
ADD *BR0+, 8

Same as in example 7 except that the contents of INDX are added to the current
auxiliary register with reverse carry propagation.

1.9.4 Immediate Addressing Mode

Immediate addressing is much simpler to understand. The instruction contains the
value of the operand. In the following example one is added to the contents of the
accumulator.

ADD #1h ; add 1 to the accumulator

ADD #1 BEFORE ‘ADD’ AFTER ‘ADD’
acc | 1h] [2h]

Figure 16: The operation of an immediate addressing mode instruction

30 Literature Number: BPRA0O63

Welcome to the DSP Starter’s Kit

The instruction below is another example of immediate addressing mode. The
instruction loads the named auxiliary register with the immediate value. After the
instruction is executed AR4 will contain 2FFFh.

LAR AR4, #2FFFh :load AR4 with 2FFFh

1.9.5 Dedicated Register Addressing

There are nine instructions in the ‘C5x instruction set that can use one of the two
special-purpose memory-mapped core CPU registers. These two registers are:

BMAR ; Block Move Address Register
DBMR ; Dynamic Bit Manipulation Register

The following table summarizes the instructions that operate on these two registers.
TMS320C5x User's Guide has detailed information on the operation of these
instructions in Chapter 4.

Table 6: Dedicated Register Addressing Instructions

Register | Instruction Description
APL When an immediate value is not specified, these parallel
DBMR OPL unit instructions use the contents of DBMR as one of the
CPL operands
XPL
BLDD These instructions can use BMAR to point to the source or
BMAR BLDP the destination space of a block move
BLPD - D —— S
BMAR MADD These multiply and accumulate instructions can also use
L MADS BMAR register to address an operand in data memory

The example below demonstrates the operation on DBMR;

OPL DAT10 ; Current data page is 6(DP = 6), OR the contents of pointed memory
. location with the contents of DBMR

OPL DAT10; DP =6 BEFORE ‘OPL’ AFTER ‘OPL’
DATA MEMORY AT 30Ah | 0001h] [OFF1h]
DBMR | OFFOh] [OFFOR|

Figure 17: The operation of a PLU instruction on DBMR

TMS320C5x DSK Applications Guide 31

Welcome to the DSP Starter’s Kit

The following example shows the use of BMAR in dedicated addressing mode.

BLDD DATO, BMAR ; Current data page is 6 (DP = 6)

BLDD DATO, BMAR ; DP =6

BEFORE ‘BLDD’ AFTER ‘BLDD’

DATA MEMORY 300h | 000Fh] [000Fh]
BMAR | 0340h] [0340h]

DATA MEMORY 340h | 0002h] [000Fh]

Figure 18: The use of BMAR in data memory access

1.9.6 Memory-Mapped Register Addressing

32

Memory-mapped registers reside in Data page zero and can be addressed by using
data page pointer DP. However Memory-Mapped Register Addressing mode modifies
these registers at any location in data page 0 without affecting the contents of data
page pointer DP. The advantage of this addressing mode is that it removes the
overhead associated with modification of DP when addressing memory-mapped
registers.

LAMM ; Load Accumulator with Memory-Mapped register
SAMM ; Store Accumulator with Memory-Mapped register

LMMR ; Load Memory-Mapped Register
SMMR ; Store Memory-Mapped Register

The following example demonstrates the use of one of these instructions.

LMMR DBMR, #320h ; Load DMBR from data memory location 320h

LMMR DBMR, #320h BEFORE ‘LMMR’ AFTER ‘LMMR’
DATA MEMORY AT 320h | 0001h] I 0001h |
DBMR | OFFOh] | 0001h |

Figure 19: Loading of a memory-mapped register

Literature Number: BPRA063

Welcome to the DSP Starter's Kit

1.9.7 Circular Addressing

Digital signal processing requires extensive use of circular buffers in waveform
generation, convolution, correlation, filters and many more applications. The following
figure shows the operation of a circular buffer. When the physical end of buffer is
reached, the buffer pointer automatically wraps around and continues.

. - N

PHYSICAL LOGICAL

BUFFER START

BUFFER BUFFER
POINTER
POINTER

BUFFER END /

N /

Figure 20: The operation of a circular buffer

The ‘C5x supports two concurrent circular buffers. Auxiliary registers are used as
buffer pointers. The following memory-mapped registers control the circular buffer
operation:

CBSR1 ; Circular Buffer One Start Register
CBSR2 ; Circular Buffer Two Start Register
CBER?1 ; Circular Buffer One End Register
CBER2 ; Circular Buffer Two End Register
CBCR ; Circular Buffer Control Register

Start and End registers hold the appropriate addresses. CBCR enables and disables
buffers and identifies which auxiliary register will be used as a pointer. The following
table shows the definition of bits within CBCR.

Table 7: Bit functions of CBCR

Bit Name Description
0-2 CAR1 identifies the auxiliary register for circular buffer 1
3 CENB1 Circular buffer one enable = 1
4-6 CAR2 identifies the auxiliary register for circular buffer 2
7 CENB2 Circular buffer two enable = 1

TMS320C5x DSK Applications Guide 33

Welcome to the DSP Starter'’s Kit

34

The following example demonstrates the use of circular buffer addressing. Firstly the
circular buffer one is set up. AR6 is assigned to be the buffer pointer. Data values can
be read from the table with ease using a single load accumulate instruction.

LACL
SAMM

SAMM
ADD

SAMM

LACC

#200h
CBSR1

AR6
#100h

CBER1

*+

load low accumulator with 200h and clear high accumulator

store the contents of accumulator in circular buffer one start register
this sets the start address for circular buffer one at 200h

store the same address in ARG so that it points to buffer start

add 100h to the accumulator, this will calculate the buffer end address
accumulator contains 200h, add 100h, now it contains 300h

store this value in circular buffer one end register

circular buffer is now set up

load the accumulator from the table and increment AR7

ARB now points to the next sample

further accesses in the same way will take more values from the table
when AR6 comes to the end of buffer, it will simply wrap around

and continue from the start of buffer

TMS320C5x User's Guide has further details of instructions of the processor. It also
has a summary list of assembly instructions in chapter 4. A brief study of some of the
instructions and a look at the summary instruction tables will make the reading of
chapter 4 much easier.

Literature Number: BPRA063

Welcome to the DSP Starter's Kit

1.10 More on DSK

1.10.1 DSK Memory Map

There is no external memory on the board except for 32 Kbyte ROM which is used
only on power up. However the ‘C5x DSK has 10K on-chip RAM. The DSK User's
Guide has the memory map for the board but we shall repeat it here for ease of
reference. The following figure shows the memory map of ‘C5x DSK.

Program Data
0000h 0000h
Bootloader Memory Map

(on-Chip) Registers
ROM 0060h
0800h Reserved
Interrupt by Kernel
Vectors B2
0840h 0080h
Debugger Reserved
Kernel 0100h B0
Program [B0]
0980h 0300h
B1
0500h
User's Reserved
Program 0800h
Reserved
by Debugger
2C00h Kernel
0980h
External User's
Space Space
FEOOh 2C00h
[B0] External
Space
\ FFFFh FFFFh

Figure 21: Memory Map of the C5x DSK

Memory map consists of two distinct separate areas: program and data. Program
memory area starts with on-chip ROM which carries the bootloader. This area is
masked with bootloader code during ‘C50 chip manufacture. On DSK, 'C50's Single-
Access RAM (SARAM) is mapped as program and data memory. RAM bit in PMST
register should not be set to zero as this will map SARAM for data only. interrupt
vectors occupy up to 0840h. Debugger kernel program is loaded on start-up into the
memory area from 0840h to 0980h. The user can use SARAM from 0980h to 2C00h.
Dual-Access RAM (DARAM) consists of three blocks. DARAM block B2 is reserved by
Kernel and is used as buffer space for status registers. DARAM block B1 exists in
data memory space at 300h-500h. DARAM block BO exists either in local data
memory space at 100h-300h or in program memory space at FEOOh-FFFFh
depending on the setting of CNF bit in ST1 register.

TMS320C5x DSK Appiications Guide 35

Welcome to the DSP Starter’s Kit

1.10.2 DSK Block Diagram
The following figure shows the block diagram of the DSK. The Analogue Interface
Circuit (AIC) is connected to the serial port. Communications with PC is achieved
through the use of three other signals.

Name Function

BIO Branch control input
XF External Flag output
RS Rest

PROM carries the start up program and the communications kernel. It is used only
once during start-up and is not functional any other time.

4)

TMS320C50
RCA JACK
y - — ANALOGUE OUT
32Kx8 »D0-D15 < b TLC32040
PROM [A0-A15 59 AIC
& RCA JACK
" ANALOGUE IN
4
COMMUNICATIONS
PORT > PC

_ /

Figure 22: DSK Block diagram

1.10.3 The boot-up sequence of a DSK

The DSK boot-up sequence prepares both the 'C50 and the board for downloading
information, monitoring and debugging program execution via the RS232 port. The
kernel program, which performs these operation is stored in an external PROM and

must be loaded into the internal RAM of the DSP.

A short program is held in the on-chip ROM (bootloader) of the ‘C50 that downloads
the contents of the external PROM into the ‘C50's on-chip RAM. When the ‘C50 is
reset, the on-chip ROM drives the BR pin low and starts to load the kernel program
from the external PROM on the DSK.

36 Literature Number: BPRA063

Welcome to the DSP Starter’s Kit

The DSK uses BIO and XF pins to communicate via an RS232 interface with the
outside world, in this case a PC. When the BIO line goes low, this indicates that an
RS232 transmission start bit has been sent by the host. Since the baud rate is
unknown, the PC sends 0x80 data through RS232 and the ‘C50 begins counting the
number of elapsed CPU cycles until the BIO line goes high again. The baud rate is set
by the width of the start bit plus 7 data bit, then divided by 8.

The kernel program consists of a communications kernel and a simple debugger. The
communications kernel enables bi-directional RS232 communications using XF and
BIO. The simple debugger uses the TRAP instruction and INT2. TRAP instruction is
used for many features of the debugger - for example, single stepping. To single step,
the debugger replaces the next instruction with a TRAP and saves the replaced
instruction in a safe memory location. After the execution of the current instruction, the
debugger restores the saved instruction. All this happens in the background and is
transparent to the user.

The DSK module uses the INT2 line tied to the BIO input to sense the activity on the
RS232 receive line. If you turn off the global interrupt enable bit or unmask INT2 the
runtime halt feature will not work. Likewise, it you overwrite the vector table for either
TRAP or INT2 the kernel will fail to operate correctly.

Summary of reserved memory areas, opcodes and register settings used by the
debugger:

Memory areas

All of RAM block B2 (60h-80h) used for CPU register storage
SARAM (800h-980h) used by the kernel

Bit settings in registers

PMST OVLY & RAM bits configures SARAM as program & data RAM
IMR=4 bit in IMR sets interrupt 2 INT2
Opcodes

TRAP opcode is reserved for the debugger for the implementation of breakpoints and
single step.

TMS320C5x DSK Appiications Guide 37

The Programming Process

2.

The Programming Process

2.1 The DSK Package

The DSK package* includes an assembler, a debugger and a comprehensive
application guide. The pack contains everything necessary to develop, run and debug
'C5x software.

312" Disk 1: DSK assembler, loader, debugger and a number of application programs

312" Disk 2: A number of application programs including Sine Wave generator,
Musical Note Generator, Serial Communications, FIR filter, Amplitude
modulator, Echo generator, Minuet player, Sound recorder, Function
generator, DTMF generator, Spectrum analyser and Oscilloscope

Hardware: TMS320C50 based DSK board
Literature: TMS320C5x DSK User's Guide Introducing the DSK

DSK Applications Guide This guide
TMS320C5x User's Guide Comprehensive guide to the
processor

2.2 Getting the system ready

The DSK must be prepared to run programs before it is useful as a development tool.
We need to complete a series of steps to get the DSK up-and-running. These are
documented in the Starter Kit's User's Guide (Chapter 2, steps 2.2 to 2.6).

2.3 Trouble-Shooting

If the DSK is not running, please check all the suggested steps in Installation errors
section of Chapter 2 in DSK User's Guide.

If your DSK is still not functioning, the following are the most common faults:

 Your Power Supply Unit (PSU) may be regulated. It may not be supplying the right
voltages to the DSK board. For DSK to function properly, you need a 9V AC supply.

o RS232 cable may have the wrong connections. Check with a continuity tester that
you have the connections shown in the table below.

Signal name Pin Numbers on DB connectors
Computer DSK

Transmit data 2 3

Receive data 3 2

Signal ground 7 5

Data terminal ready 20 4

If not, you will need to get a cable with the correct connections.

* If you purchased the DSK Applications Guide separately, you will only get the guide and Disk 2.

38

Literature Number: BPRA063

The Programming Process

» Try changing the baud rate, starting with a lower one.

DSK5D b1200 .J
Try also 2400 and 4800.

» Another common fault is the alteration of PATH statement. Check that your
AUTOEXEC.BAT file has DSK directory listed as shown below.

PATH=c:\dos;c:\dsk

If you have installed DSK software on a drive different than that of the PATH
statement, then that drive must be specified. For example if DSK directory is on
your E drive, than the path statement should be:

PATH=c\dos;e:\dsk
You will need to restart the computer to make these changes take effect.

* CONFIG.SYS file must have a line:
FILES=20

It the FILES line has a number specified which is higher than 20, do not reduce it,
leave it as is.

e If your DSK is still not functional, reinstall the software supplied on Disk 1 onto your
hard disk.

= ltis also possible that your compuier may have a fauit. Try getting DSK going on a
different computer.

)

Assuming that your DSK is now functional under DOS, you can try to use it under
Windows 3.1™, Windows 95™ or Windows NT™. Using your DSK in a Windows™
environment has some advantages particularly if you are using a word processor
such as Word 6™ to edit your programs. You can switch between a DOS window
and word processor window using ALT-TAB key combination.

To have your DSK working under Windows, open a DOS window and enter

DSK5D c2 .
It is common that Windows™ uses serial port 1 for mouse communications. The
command line above assumes serial port 2 is free for DSK. Use ¢3 or c4 if serial
port 2 is used by some other device.

TMS320C5x DSK Applications Guide 39

The Programming Process

2.4 Using the Debugger

40

The DSK user's guide has detailed information on the use of debugger in Chapter 3.
The interface is very intuitive. We shall use a few example commands here to get you
started quickly. For a more comprehensive study, follow chapter 3 of DSK User's
Guide.

DSK's debugger has a window oriented interface as shown in Figure 23. The top
menu bar shows the commands. Each command also has a sub menu. Most
commands consist of two letters. Those are the capital letters in menus. Commands
are issued at the bottom of the window.

For example, to display an area of memory, Display menu is activated by ‘D’ and then
a sub menu is displayed. Choosing Data ‘D’ in this sub menu displays contents of data
memory in the lower portion of the screen.

Display Fill Load Help eXce Quit Modify Break Init Watch Reset Save Copy N
== TMS320C50 Reverse Assembler TMS320C50 Watches TMS320C50 Register ===

reverse assembly address watch register contents

e TMS320C50 Display Data Memory: *Hexadecimal® Format

data / program memory display

wtl' COMMAND y

Figure 23: DSK debugger main screen

Let us now use a few commands.

Example 1: Filling data memory with a hex pattern

Enter FD ‘Fill Data’ followed by a carriage return in the INPUT COMMAND line. A
dialogue box appears. Reply to prompts as shown in Figure 24. Each entry must be
followed by a carriage return. Once the ‘Fill Data Memory finished’ message appears,
press ‘ESC’ to remove the dialogue box. The lower window now displays the filled
memory section. 127 (7f) memory locations of a word length (16 bits) have been filled
with the hex pattern ‘abcd'.

Literature Number: BPRA063

The Programming Process

Length

Start Address 1000

Fill pattern

Fill Data Memory finished

Fill Data Memory

ii
abed

Figure 24: Filling data memory in DSK debugger

Example 2 : Modifying the contents of a register

Enter MR ‘Modify Register' followed by a carriage return in the INPUT COMMAND
line. A dialogue box appears as shown in Figure 25. On the ‘Input’ line in the box,

enter the following

accu = 1f1f
This will change the contents of the accumulator. Accumulator is 32 bits but we have

only put in a 16-bit value.

Register;

Status bits:

Syntax: register = value <Q > quit

TIM,... showed in Register Window

Input: accu=If1f

Modify TMS320C50 Register =y

ACCU, ACCB,PRG,I'RGU..2.5T0,ST1
ARU..AR7.PC,50..56,DRR,DXR

ST0: ARP,OV,OVM,INTM.DP
STI: ARB,CNF,TC,SXM,CHMXF,PM
SPC: DLB,FO,FSM,...

->XG. ARB and INTM cannot be changed!

Figure 25: Modifying contents of a register

TMS320C5x DSK Applications Guide

41

The Programming Process

Observe the rightmost window where registers are displayed. The contents of ‘ACC’
has changed as shown in Figure 26.

= TMS320C50 Register ==
"C :00001f1f C:0

: OV:l
PRG : PM:0
TRGO :0000 TRGI: 0000
) DP: 0000
S 0600 ST1 :llfc
PC : 0000 ARO: 0000
St0 : 000 ARI: 8404
St1 000 AR2: 0a00
St2 000 AR3: 0000
St3 @ 000 AR4: 0000
St4 : 00(ARS5: 0000
S : 1] ARG6: 0000
S s 0000 AR7: 0000
DRR :6¢00 DXR :0000
TIM :0000 PRD :0000
TMR :0002 1FR_ :001a
MST :0834 INDX :0000
DBMR :0000 BMAR :0000
CWSR :0000 GRG :ff00
SPCR :3CC8 TCR :0400

Figure 26: Debugger register display

Al registers in the register window have their standard names. St0 to St6 denote the
hardware stack. You can observe the operation of the stack when a ‘CALL' instruction
is executed.

It is a good idea to try a number of menu commands before proceeding to the other
sections. For example, use ‘MD’ to modify the contents of memory locations. You can
see the changed contents of the memory locations in the data display window. You
can also add watches ‘WA’ to these memory locations and observe the changes in the
‘Watches' window.

42 Literature Number: BPRA063

The Programming Process

2.5 Suggested Hardware Configuration

A suggested system configuration is shown in Figure 27. We have already covered
power input and connection to the PC.

impedance 4000 microphone

signal generator

10HZ to 20kHz
OV peak

- RCA juck EGA or VGA monitor

)

o

7.

~

N

a L Y PinRS232 cab

-

= coml orcom?

=

=) N)

@] 2 mm juck

¥ external power supply 3 Mbvies HDD

A 9V ue supply -)

250mA S060Hz 100 IBM cumpunblc

286 10MHZ or higher
DOS 4.01
no need for Windows

CRO with probe

audio amplificr
multimedia speakers
RCA 10 phono connector

Figure 27: Suggested hardware configuration

Serial Input:

Ideally, a signal generator provides the best input to the DSK as the user has total
control over input frequency and power. Alternatively, voice or sound can be used by
connecting a microphone to the RCA jack or a sound source such as a cassette
player.

Serial Output:

Monitoring the output can be achieved by connecting the RCA port to an amplified
speaker. The user can then hear how the program manipulates data using a cathode
ray oscilloscope (CRO) enables the designer to see the signal. Also the signals on
DSK board's header pins can be tested using a CRO.

2.6 Installing Demonstration Software

Several software examples are contained on a 3" floppy disk, which should be
loaded onto the hard disk drive.

« insert the application disk into your floppy disk drive

e from the relevant hard disk drive move to the floppy :\a: o

o type a:\install 4

« follow the steps in the installation program

TMS320C5x DSK Applications Guide 43

The Programming Process

« remove the disk from the drive
« application software should be in DSK's home directory :\dsk

The installation program creates sub directories under the DSK's home directory ‘dsk’,
then copies the files from the applications disk into appropriate directories. The DSK
User's Guide calls this directory ‘dsktools’. However DSK installation program creates
it as ‘dsk’. Do not be confused by this; just name the home directory ‘dsk’; it is
simpler.

2.7 Assembling and running a program

44

The DSK is a programmable tool. On a cycle by cycle basis it must be told what to do
and in what order. The set of rules by which the DSK processor executes instructions
is known as the program. The program is totally defined by “programmer”.

A program is written using a set of pre-defined instructions. We studied some
assembly language instructions for 'C5x in the previous chapter. DSK User's Guide,
Chapter 4 has comprehensive information on ‘Using the DSK Assembler'. It is
important that the conventions and defined protocols explained in DSK documentation
are adhered to. This will make your programs understandable and easier to debug.

The TMS320C5x instruction set is very comprehensive, allowing the programmer
great flexibility when writing the code. Once the program has been written, it needs to
be assembled. The assembler is a software program that converts the designer's

format (machine code) that can be

source code in assembly language into a code

LT LUUT asoSTinioly yuay’c 1 =

downloaded to the DSK.

To check whether your assembler is working correctly, type
C:/DSKTOOLS>dsk5a try1 .1

File ‘try1.asm' is supplied with DSK. You can use a different file if you wish.

This will assemble the file and create an ‘object’ file with ‘dsk’ extension which is
down-loadable to DSK for execution. The assembled file is not Common Object File
Format (COFF). However DSK debugger supports COFF files. You may need this
feature if you use other 'C5x development tools.

Make sure that you are in DSKTOOLS directory. To download the program, invoke the
debugger by typing:
C:/DSKTOOLS>dsk5d

Now the assembled program can be downloaded from within the debugger by issuing
Load Dsk ‘LD’ command.

[INPUT COMMAND: LD]

Literature Number: BPRA063

The Programming Process

A dialogue box will appear as shown in Figure 28. Press carriage return and the
contents of the dialogue box will change as shown in Figure 29. Reply yes ‘y' to this
dialogue box. Wait till download terminates and then press ‘ESC'. This completes the
download process and the top leftmost window of the debugger will now display the
‘try1’ program.

load program file: dsk-format

Last used file : E2\DSKTOOLS\tryl.dsk

Load DSK(.dsk) file: tryl
ESC -> exit, RETURN -> take last file

Figure 28: Loading a DSK file

load program file: dsk-format
Last used file : E:\DSKTOOLS\try1.dsk

Use FAST Mode? [N]
ESC -> exit, RETURN -> take last file

Figure 29: Choosing a download type

You can now run this program by issuing eXecute Go ‘XG' command from the INPUT
COMMAND line of the debugger. 'ESC' stops execution.

In DSKTOOLS directory, you will notice two files which are never mentioned
anywhere; 'DSK5D.CFG' and ‘DSK5D.PRM'. These two files are created by the
debugger to keep its configuration parameters. You need never touch them or modify
them.

Texas Instruments has provided a series of sample programs with the DSK. We shall
start the programming process with one of these sample programs; PASS.ASM.

TMS320C5x DSK Applications Guide 45

The Programming Process

2.8 PASS.ASM

46

“PASS.ASM" is a simple program and it only passes information from the serial input
port to the serial output port. On every interrupt, the input port of the DSK is read into
the DSP and is written unmodified to the serial output port. Figure 30 demonstrates
this functionality. In addition, the program also:

o Initialises the DSP processor

« Initialises the on-board AIC, setting a sampling rate of 8KHz

» Reads every sample from the serial port to the DSP’s accumulator

o Writes the accumulator to the output serial port before the next sample arrives.

The program serves to illustrate the quality of a signal passed through a 16 bit
processor and also shows how the board can be initialised. In addition, the software
can be used as a template for expanding and developing different applications.

analogue: digital

=

DSK INPUT

DSK OUTPUT

Figure 30: Functionality of PASS.ASM

Literature Number: BPRA063

The Programming Process

Before starting the assembly process, connect a sound source to the input RCA jack
of DSK. This could be a dynamic microphone, a cassette player or just a signal
generator. Also connect an amplified speaker to the output RCA jack. This configures
the hardware.

1) To assemble and run the software from the source code file PASS.ASM type:
\dsktools\pass\DSK5A PASS. ASM -| .
(Chapter 4 of DSK User's Guide)

The assembler transforms the source code *.asm file into a *.dsk program that can be
downloaded to the DSK. A list file is also produced because of -I' option. The list file is
helpful when debugging. The files produced are as follows:

PASS.LST a list file of the assembled program
PASS.DSK a DSK executable file

2) To download the software directly to the DSK type:
\dsktools\pass\DSK5L PASS.DSK .J
(Chapter 4 of DSK User's Guide)

The down-loader program takes the PASS.DSK program and loads it to the DSK via
the RS232 cable. You should now hear the input sound source being reproduced on
the output speaker.

3) To downioad the software to the DSK using the debugger, type:
\dsktools\pass\DSK5D ..

(Chapter 3 & 5 of DSK User's Guide)

This initiates the debugger. Now from within the debugger, download the program:

LD to load a DSK file type
PASS.DSK file name

Y fast load

J back to the debugger
XG run the program

TMS320C5x DSK Applications Guide 47

The Programming Process

s ™
Source Code
i * ASM
L .
e text file
(&5@%&& Y,
} ™
Assembled Code
’ DSK5A.EXE
[
DSK Loader DSK Debugger

A i Frro [f"j
5| DSKSLEXE m o
@ =Y L%J DSK5D.EXE

o innnt aniinA o
HT nipulL suuiliu suu

Now let us examine the program.

2.9 The fundamentais of a DSK Program

2.9.1 Overview

48

Once the PASS.ASM program has been assembled, we can observe how it works.
This practical approach illustrates the starting point to any DSK assembly program.

PASS program represents a very simple DSK program. It also illustrates the global
concepts that are behind a DSK program and the software components that are
necessary to ensure functionality. Any DSK program is split up into two primary parts;
the instructions that are required to set up the board to run correctly and the
instructions that executes the user's algorithm.

The first section is a necessary part of any DSK program which can be simple like
PASS.ASM or complicated such as a digital mobile telephone application. In
PASS.ASM this part consist of Settings, Interrupt Settings, Processor Initialisation and
Board Initialisation. The second section simply depends on the application. In
PASS.ASM second section consist of a Main Program and two Interrupt Service
Routines (ISRs) - very simple code. Figure 31 demonstrates the code sections for a
typical DSK application and PASS program.

Some DSK code only needs to be executed once, while others must be run
continually on every interrupt. The initialisation and settings blocks in our example are
run once while Main program and ISRs run continuously.

Literature Number: BPRA063

The Programming Process

Let us briefly consider the function of each module:

1 - Settings

A section of code that assigns, allocates and reserves areas of data memory to hold
constant values such as filter coefficients and also temporary results from algorithm
execution. In PASS, this section stores the constants that determine the AIC's
characteristics.

2 - Interrupt Settings
A section of code that tells the processor the type of interrupts to expect and what to
do on receiving an interrupt. In PASS, this section holds the addresses of ISRs.

3 - Processor initialisation

Code which initialises the processor, transferring the known RESET state to the
required set-up. This includes masking registers, enabling interrupts and setting
operation modes. This is one of the very important sections of the code. If not
executed, the other code sections may not execute correctly.

In PASS, this section sets PMST register, data page pointer (DP), processor wait
states and appropriate interrupt masks.

4 - Board initialisation

Code that initialises the DSK board, particularly the AIC's sampling rates and anti-
aliasing filters.

5 - Main program

The main directives to the processor conveying the user's intention. In PASS, this
section is very simple and consist of a few instructions that wait for interrupts.

6 - The Interrupt Service Routines (ISRs)

The ISRs contain instructions that the processor executes on receiving an interrupt. In
PASS, there are two ISRs allowing reception and transmission of data.

TMS320C5x DSK Applications Guide 49

The Programming Process

50

e T
1) Settings I
.................) !
' Constants i
|) '
. + i
2 ____________ , [interrupt Settings Set up
i |Transmit / Receive Interrupt Vectors ;
b— + :
3 ! Processor Initialisation W E
; Set Registers .
| ! |
v B - '
4 e ! Board Initialisation !
: AIC to 8kHz {
' _J I
h] i
g Y — :
5 ! Main Program algonthm
E Wait for interrupts)
' J H
i X :
ISR |
6 : Read / Write to ;
| AIC via Serial Port !

Figure 31: PASS.ASM Flow Chart

The DSK assembler is simple and requires no linker stage. With the DSK we declare
the memory sections within the source code itself.

The recommended memory segmentation is shown Figure 32. The memory
segmentation in the program code is done with assembler directives such as
‘mmregs’, ‘ds’ and ‘ps’. DSK User's Guide has more information on assembler
directives in Chapter 5. The memory allocation issued with these directives must
agree with the processor and the system memory map. For example in PASS, data
values are stored starting from 0F00 hex. Checking this with the memory map of DSK
explained in Chapter 1, it falls into ‘User’s Space’.

Literature Number: BPRA063

The Programming Process

.mmregs Defines memory mapped registers such as ARX's
ds (address) Assemble to data memory

data values OFO0h within PASS.DSK
ps (address) Assemble to program memory

interrupt vectors 080Ah within PASS.DSK

ps (address) Assemble to program memory

entry ——— Marks exccution start point of program
program code 0AOOh with PASS.DSK
.end Marks end of program

Figure 32: Memory Addresses

Now let us examine each of these fundamental program blocks for PASS. While you
are reading this text you may use a word processor to view the PASS program.

2.9.2 Settings

The first assembler directive *.mmregs’ defines all the memory mapped registers with
their standard names that were listed in Chapter 1.

The AIC initialisation routine uses pre-set values to determine the sampling rates and
filter cut-off frequencies of the transmit and receive channels of the AIC. These
constants are stored at the top of the code. The assembler directive ‘.ds' causes these
constants to be listed in data memory from address OFOOh. The data values listed
here will be used to set the AIC sampling frequency and gain. Constants are given the
names of registers in the AIC to make them more understandable. For example the
constant to be written into Transmit Counter Register A is named TA, Receive Counter
Register A is named RA and so on.

The following table lists these names

Transmit Counter A TA
Receive Counter A RA
Transmit Counter B TB
Receive Counter B RB
Control Register AIC_CTR.

The meaning of comment lines will become clearer in the explanation of AIC and
AIC2ND subroutines later on.

TMS320C5x DSK Applications Guide 51

The Programming Process

.ds 0£00h ; Assemble to data memory

TA word 17 ; TA AIC value - Fcut = 8 kHz

RA word 17 ; RA AIC value - Fcut = § kHz

TB word 37 ; TB AIC value - Fs = 2*Fcut

RB word 37 ; RB AIC value - Fs = 2*Fcut

AIC_CTR .word 28h ; |LP xx Gl GO | SY AX LB BP|
FE R I R +
P GAIN [| +-- BP Filter
| synch --+ | +----- Loopback
Pl

Figure 33: PASS.ASM Settings

Note that the values are stored in decimal format except the Axc_cTR which is
hexadecimal format (28h).

description, is a 16 bit data integer
description, assigns a name to a value
which is substituted during the assembly
process

description, reserves areas of memory for
data of a certain number of bits.

name .word value
name .set value

.space bits

DSK User's Guide has more information on additional assembly directives in Chapter 5.

2.9.3 Interrupt Settings

The Interrupt Settings section informs the processor the type of interrupts to expect
and on receiving an interrupt, where to find the ISR. These addresses are called
Interrupt Vectors. On recognising the interrupt, the processor goes to the interrupt
vector location. Interrupt vector location contains a further branch to a the ISR. In
PASS, location 080a hex contains a branch instruction and the next location contains
the actual address of receive ISR. The next two locations contain the branch
instruction and the address of the transmit ISR.

; INTERRUPT SETTINGS

.ps 080Ah ; Assemble to program memory
RINT b RX ; Branch to RX on receive interrupt
XINT b TX ; Branch to TX on transmit lnterrupt

52

Figure 34: PASS.ASM Interrupts

You can verify this from within debugger;
Load PASS in the debugger and then
INPUT COMMAND: DPA .1

Literature Number: BPRA063

The Programming Process

New Address: 080a .

This command will display the contents of all program memory locations starting from
080a. The contents of 080a and 080b should be '7980" and ‘0a16' which means
branch to address ‘0a16’. Now return to main disassembly window and check the
actual location of the receive ISR.

2.9.4 Processor Initialisation

Before any processing starts, the processor must be set to a known state. The
TMS320C50 has a number of configuration registers. This program section sets these
registers.

The initialisation instructions may need modifying for more complicated programs.

; Mark program entry point

.text ; Text

START setc INTM ; Disable interrupts
ldp #0 ; Set data page pointer to page zero
splk #0834h, PMST ; Write 16 bit pattern to PMST register
lacc #0 ; Load accumulator with number zero
samm CWSR ; Set software wait state to zero
samm PDWSR ; Set software wait state to zero
splk #022h, IMR ; Using XINT syn TX & RX
call AIC ; Initialise AIC and enable interrupts
clrc VM ; Overflow mode is set to zero
spm 0 ; Product shift mode is set to zero
splk #012h, IMR ; Mask interrupts
clre INTM ; Enable interrupt

Figure 35: PASS.ASM Initialisation

e Before commencing the processor initialisation, the interrupts which could interfere
with the program flow are temporarily disabled. This is performed by writing directly
to the status register (ST0) which contains the interrupt “on/off switch”. The SETC
command sets the location within STO to 1. This location is represented by a
defined label ‘INTM'. This instruction disables all interrupts. This setting does not
effect the operation of the RESET interrupt.

e The TMS320C5x processor splits memory up into a series of manageable regions
which are termed as “pages”. We discussed this in Chapter 1, Direct Addressing
Mode’ section. When addressing memory, the program instruction contains the
lower 7 bits of the 16 bit memory address. The higher nine bits are referred to by
the data page, thereby making up the whole address. Thus the data page points to
one of the 512 pages while the instruction part of the address refers to an offset on
each page. Therefore, it is possible to address memory using only one 16 bit
program instruction. ‘LDP #0' instruction sets data page to zero.

TMS320C5x DSK Applications Guide 53

The Programming Process

e SPLK instruction writes a 16 bit word directly to a given register, in this case the
Processor Mode Status Register ‘PMST'. Each bit in this register affects a
configuration in 'C50. Let us study the function of each bit:

Table 8: PMST Register

Bit Symbol | Setting

0 BRAF 0 is a flag that is automatically set when block repeat is active. In
the case of PASS, it is not the case as these instruction in the
processor initialisation need only be run once.

1 TRM 0 disables the use of multiple TREGs which sets the device in a
TMS320C2x compatible mode.

2 NDX 1 enables extra index register and configures the device to run in
an enhanced TMS320C5x mode. INDX and ARCR are not
affected by any C2xx compatible instruction

3 MP/'MC 0 disables / enables on-chip ROM. The corresponding external pin
is sampled at RESET and is reflected in this bit. In this case, on
chip ROM is enabled.

4 RAM 1 RAM =1 sets the entire on-chip RAM into program space.

5 OVLY 1 RAM overlay bit. This bit works together with RAM bit to map
on-chip RAM. Table 9 shows the affect of possible bit
combinations.

6 zero 0

7 AVIS 0 is address visibility. When this bit is set, internal program
address is mirrored on external pins for address tracing and
debugging.

8 zero 0

9 zero 0

10 zero 0

11 IPTR 1 these five bits point to the 2K memory block where the interrupt

12 IPTR 0 vectors reside, which allows re-mapping. At reset these bits

13 IPTR 0 reside at 0000h in memory. The interrupt vector address is

14 IPTR 0 generated by concatenating these bits with the interrupt vector

15 IPTR 0 number.

Figure 36 demonstrates the address generation of the receive
interrupt in PASS.
PMST oJoJoJo[1]o]oJo[oJoJ1[1[o]1]o0JoO
Hex 0 8 3 4

Table 9: On-chip Single Access RAM configuration control

OVLY |RAM | On-chip SARAM configuration
0 0 Disabled
0 1 Mapped into program space
1 0 Mapped into data space
1 1 Mapped into both; program and data space

54 Literature Number: BPRA0O63

The Programming Process

In summary, the settings of PMST register:

e extra index register is enabled and the processor is in enhanced 'C5x mode
¢ on-chip SARAM is mapped into both; program and data space

® interrupt vector page is set to 8.

Actual interrupt addresses are calculated by concatenating the IPTR defined page
number with the interrupt vector number. Figure 36 shows the calculation of the
receive interrupt vector when IPTR is set to 8.

Bit 15(14[13]12[11 |10 9 [8[7[6[5[]4]3[2[1]0
Vector ojof0flO0|J1|jO|JO}JO]JO]JO]JOJOf1T]O}]1]0
Hex 0 8 0 a

IPTR oJoJoJo] 1]

Interrupt Number JoJoJoJoJ1JoJ1]o]

Figure 36: Interrupt vector address calculation

The instructions until now have completed the processor initialisation. The following
instructions prepare the processor for board initialisation.

e ‘LACC’ instruction loads the number zero into the accumulator, overwriting all other
values. This is in preparation for the subsequent instructions.

e ‘saMM’ stores the value contained within the accumulator (in this case zero) to a
memory mapped register. Both registers CWSR and PDWSR control software wait
states that hold up the CPU while accessing slower off-chip memory. As the DSK
has no off chip memory contained on the board, this function is not required and
therefore is zeroed. Chapter 5 & 6 of TMS320C5x User's Guide has more
information on the use of these registers.

e The Interrupt Mask Register (IMR) selects the interrupts to mask. The IMR is written
to with the 'spLK’ instruction. The instruction works in conjunction with the ' SETC
INTM' which is a global switch for all interrupts. The IMR register selects the
interrupts to operate when interrupts are enabled. 022h turns off the receive
interrupts and allows the transmit interrupts which is used within the AIC routine.

e 'CALL AIC’ instruction starts executing code from the AIC label within the code.
This is a ‘cALL’ to subroutine AIC‘. After execution, the program returns to the
next line after the subroutine call.

These instructions have now completed the board initialisation. We do not yet know
what AIC subroutine has accomplished. We shall examine that in the next section.
The following set of instructions prepare the processor to run the main program.

e 'CLRC OVM' clears the overflow mode bit. OVM bit resides in STO. If overflow
occurs during execution, the most significant bits are allowed to overtlow normally.

o The PM status bits are two least significant (LSB) bits contained within the Status
Register 1 (ST1). They control a predefined shift within some instruction set

TMS320C5x DSK Applications Guide 55

The Programming Process

commands such as a multiply and accumulate. As the program does not require
such a shift, these bits are set to zero.

e Finally, the INTM bit of the status registers is cleared, allowing all masked interrupts
to occur.

2.9.5 AIC Initialisation

In the previous section, reference was made to the initialisation of the AIC. The
initialisation is completed by a subroutine. Since subroutines do not represent the
main code and functionality, they are usually kept towards the end of the software.
The main or initialisation code can then ‘CALL’ the subroutines.

The TLC320C40 is a general purpose codec (coder-decoder) which is incorporated on
the DSK. It is connected to the serial port of the 'C50. The device and the serial port of
'C50 must be configured to operate at the correct sampling rates and filter cut-offs. For
a detailed description of how to set sampling rates and other features of the AIC
please refer to the appendix x. The operation of the serial port of 'C50 is explained in
detail in Chapter 5 of TMS320C5x User’s Guide.

The functionality of the AIC initialisation routine is relatively complicated. For the
inexperienced user an overview of the functionality of the routine will be sufficient at
first. It is possible to use the routine without fully appreciating how it works. In general:

o The processor timer is used to drive an external pin which clocks the AIC unit
The Serial Port Control (SPC) register is set
The AIC is reset

e Various registers are loaded - TA and RA
-TB and RB
-AIC_CTR

e Return to main program.

AIC splk #20h, TCR ; To generate 10 MHz from Tout
splk #01h, PRD ; Load period counter with 1
mar *,ARO : Modify AR pointer (used with GREG)
lacc #0008h ; Load acc with 08h
sacl SPC ; Store acc in SPC
lacc #00C8h ; Load acc with 0C8h
sacl SPC ; Set and reset SPC register

Figure 37: PASS.ASM Board Initialisation

56 Literature Number: BPRA063

The Programming Process

Note the following:

TA driven by master clock and determines D/A conversion timing
B
RA driven by master clock and determines A/D conversion timing
RB

Setting the timer and initialising the serial port of 'C50

The Timer on 'C50 is used to generate a clock pulse for AIC. The timer is a counter
that is decremented by one at every CLKOUT1 cycle. CLKOUT1 is an internally
generated clock and is half of the master clock (20 MHz). A timer interrupt is
generated each time the counter decrements to zero. This is also mirrored on TOUT
pin. This waveform can be used as clock for external devices such as AIC. The timer
block of the processor consist of three registers; Timer Control Register (TCR), Period
Register (PRD) and Timer Register (TIM). The frequency on TOUT pin is given by;

7 CLKOUTI
“(TDDR + 1)< (PRD + 1)

Toutr

TDDR is Timer Divide Down Ratio which is represented by 4 bits in TCR. PRD is the
value in the Period register. Let us now set the TOUT to 10MHz.

e SPLK writes 020h to the or Timer Control Register (TCR).

Table 10: TCR Register

Timer divide down ratio
Timer divide down ratio
Timer divide down ratio
Timer divide down ratio
Stop/ Start timer (stop = 1)
Reload Timer with period 1
Prescaler

Prescaler

Prescaler

Prescaler

O|0|0|0|=|O|O0|O|o|o

OO (N[O AWM |O

Setting bit 5 high resets the timer. Timer Divide Down Ratio (TDDR) bits are reloaded
from the prescaler on every countdown. These are set to zero to select the smallest
period.

e The value ‘1" is written to the PRD register. The value of the PRD register is loaded
into the timer register, TIM, which is decremented on every clock cycle by one.
When TIM reaches zero, the timer is reset by automatically writing bit 5 high once
again.

TMS320C5x DSK Applications Guide 57

The Programming Process

58

¢ Now we can calculate the output frequency on TOUT by using our formula above;

20 MH:=
TOUT =——————=10MH:=
O+ hyx(I+1)

Chapter 5 of TMS320C5x User's Guide has more detailed information on the
operation of its timer.

‘MAR *, ARO’ instruction sets ARP (auxiliary register pointer) to ARO for use when
accessing global memory.

The accumulator is loaded, using the LACC command, with 1000b which is then
used in the subsequent line.

For configuring the serial port, SPC requires two consecutive writes. The first write
must write ‘0’ to bits 6 & 7 to reset the transmitter and the receiver. During the first
write, bits 0-5 may be written to for configuration. We will set bit 3 high to indicate
frame synchronization pulses are required for transmission and reception of each
frame. The rest of the bits can be set to zero.

‘LACC #0008h’ Instruction loads the immediate value to the accumulator.
“SACL SPC’ instruction writes this value to the SPC register resetting the
transmitter and the receiver and setting bit 3 enabling frame synchronization

pulses. The following two instructions perform the second write to SPC enabling the

reset transmitter and receiver by writing ‘1's to bit 6 & 7. Frame synchronization bit
is kept set at ‘1". This completes the initialisation of the serial port. Chapter 5 of
TMS320C5x User's Guide has more detailed information on the function of each bit
in SPC.

When not running in continuous mode, AIC requires three signals for serial
communication; the data line, a line to initialise the transfer and a line to clock the
transfer. Frame synchronisation pulse is needed to initialise the transfer.

Resetting the AIC
lacc #080h ; Initialise 8000h-FFFFh global memory
sach DXR ; Store high acc to DXR
sacl GREG ; Store to global memory register
lar ARO, #0FFFFh ; Set ARO register
rpt #10000 ; Set repeat counter
lacc *,0,AR0O ; Access global memory
sach GREG ; Disable global memory

Figure 38: Reset AIC

e Once a clock has been applied to the AIC, we need to ensure that the device is

placed into a known state by performing a reset operation. The IBR pin of the
TMS320C50 is connected to the reset pin of the AIC. The IBR is driven low when
external global memory is accessed.

Literature Number: BPRA063

The Programming Process

Global memory is an area which can be accessed by more than one processor. The
TMS320C50's address space is divided up into local and global sections; the local
is for the DSP processor and the global sections are for inter-processor
communications. A memory mapped register, GREG, specifies the sections of
memory that are to be defined as global.

‘LACC #080h’ instruction loads the accumulator with 80h, leaving the upper
accumulator filled with zeros. Remember that the accumulator is a 32 bit register.

The Data Transmit Register ‘DXR’ is flushed, by writing the zeroed upper
accumulator to DXR.

*SACL GREG’ instruction causes the contents of the low accumulator to be placed
into the register GREG, indicating that memory space 8000h to FFFFh is defined as
global memory.

‘LAR ARO , #OFFFFh’ loads the auxiliary register, ARO with the number
OFFFFh. We shall use this register to access the address OFFFFh.

Note that this instruction also sets ARP to point to ARO.
‘RPT #10000°. The repeat counter is set to repeat the next line 10,000 times.

‘LACC *, 0, ARO’ The accumulator is loaded with the contents of the memory
location pointed to ARO. i.e. global memory location FFFFh is accessed 10,000
times. This drives the !BR pin low sufficiently long to reset the AIC. (Clock cycle =
25ns BR pin is low for 25x10000 ns = 250us.)

"SACH GREG’ . The GREG register is then zeroed by loading the upper contents
of the accumulator, turning global memory off.

Setting AIC registers

This section of the code loads the AIC registers with the values required to set the
right sampling rates and filter cut-offs. A reference is made to a function 'AIC2ND’.
This is listed separately in the following section.

To set the AIC registers, accumulator of 'C50 is loaded with correct values and then
these values are transmitted to the AIC through the serial port of 'C50. Figure 39
shows a simplified diagram of AIC registers and its bit placements. This figure should
help with understanding of the following code fragment.

Bit positions
d15 [d14 [d13 [d12[d11[d10 [d9 [d8 [d7 [d6 [d5 [d4 [d3 [d2 [d1 [do
X | X TA Register X | X RA Register 0 0
X |1 X TB Register X [X RB Register 1 0
X[X[XXX x][Xx[Xx Control Register 111

Figure 39: AIC Registers

TMS320C5x DSK Applications Guide 59

The Programming Process

ldp #TA ; Lead data page TA

setc SXM ; Set S¥M for sign extension mode
lacc TA, 9 ; Load accumulator with TA data
add RA, 2 ; Load accumulator with RB data
call ATC2ND ; Call function AIC2ND

1dp #TB ; Load data page TR

lacc TB, 9 ; Load accumulator with TB data
add RB, 2 ; Load accumulator with RB data
add #02h ; Add 10b to set status bits
call AIC2ND ; Call function AIC2ND

1dp #AIC_CTR ; Load data page AIC_CTR

lacc AIC_CTR, 2 ; Initialised control register
add #03h ; Add 11b to set status bits
call AIC2ND ; Call function AIC2ND

ret ; Return from call

Figure 40: Setting AIC Registers

The first register to be set is the TA register. *LDP #TAa’ instruction points the data
page pointer to the data page where TA resides. This section starts at absolute
location OFFFFh which was set in the ‘SETTINGS' section.

Secondly, the SXM or sign extension mode is set. This instruction allows sign
extension when accumulator is loaded.

‘LACC TA,9'. The accumulator is loaded with TA. A shift of nine places left

L]
ensures that the data is stored in the correct place within the word and therefore
appears in the correct location in the TA register when transmitted. (Figure 39) Sign
extension ensures that all high bits are set to zero since the value of TA is 17.
Figure 41 shows the contents of TA and accumulator upon completion of this
instruction.
TA
d15 [d14 |d13 |d12 {d11|d10|d9 |d8 |d7 |d6 |d5 |d4 [d3 |d2 [d1 |dO
0 0 0 0] 0 0 0 0 0 0 0 1 0 0 0 1
Low accumulator
d15 [d14 |d13 | d12 [d11|d10 |d9 |d8 |d7 |d6 |d5 |[d4 |[d3 |d2 |d1 |d0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
Figure 41: Contents of TA and Accumulator
e ‘ADD RA,2’. RA is added to the accumulator, again left shifted by 2 places to
ensure that it is in the correct location. Figure 42 shows the contents of RA and
contents of the accumulator after the execution of this instruction. The least two
significant bits are left as zero. These two bits tell the AIC to load the data word into
the A counter (TA).
60 Literature Number: BPRA0O63

The Programming Process

d15 | d14 | d13 |d12 |d11|d10 |d9 |d8 |[d7 |d6 |[d5 [d4 [d3 [d2 [d1 |dO

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

low accumulator

d15[d14 [d13 [d12[d11[d10]d9 [d8 [d7 |d6 |d5 |d4 |d3 |d2 |d1 |dO
oloft]JoJoflol1JoJo[1]oloJol1]o0o]o

Figure 42: Contents of RA and Accumulator

o This data packet is then sent to the AIC by calling AIC2ND.

* The second register to set is TB. The appropriate data page is selected by '‘LDP
#TB’ instruction.

® The accumulator is loaded with TB. A shift of nine places left ensures that the data
is stored in the correct place within the word. The following figure shows the
contents of TB and the accumulator after the instruction is executed.

B
d15 |d14 | d13 [d12 |d11[d10 |d9 [d8 }d7 |d6 |d5 [d4 |d3 |[d2 |d1 [dO
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

low accumuiator
d15 [d14 [d13 |d12 |d11|d10 |d9 [d8 [d7 |d6 |d5 [d4 |d3 |d2 |d1 [dO
0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Figure 43: Contents of TB and Accumulator

e '‘ADD RB,2’. RBis added to the accumulator, again left shifted by 2 places to
ensure that it is in the correct location.

e 'ADD #02h'. The least two significant bits are changed to 10, indicating that the
word is intended for the B counter (RB). The following figure shows the contents of
RB and the accumulator after the execution of the two instructions.

RB
d15 | d14 |d13 |d12 |d11|d10 |d9 |d8 |d7 |d6 |d5 |d4 |d3 |d2 [d1 [dO
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

Low accumulator
d15)d14 {d13 [d12|d11|d10 |d9 [d8 |d7 |d6 |d5 |d4 |d3 |d2 [d1 |[dO

0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0

Figure 44: Contents of RB and Accumulator

ThiS320C5x DSK Applications Guide 61

The Programming Process

e This data packet is then sent to the AIC by calling AIC2ND.
e Writing to registers TA, RA, TB and RB sets the sampling frequency. The formula
is:

MCLK

SAMPLING FREQUENCY = ————
TAx2xTB

MCLK is tied to TOUT which has a frequency of 10MHz as calculated above.
Remember:

TOUT =

CLKOUT! 20 MHz

= =10MH:=
(TDDR+1Yx(PRD+1) (0+1)yx(I+1])

TA and TB were just loaded with values of 17 and 37 respectively. Therefore the
actual sampling frequency is:
. o, 10MHz i
SAMPLING FREQUENCY = ————— = 8KIi:z
17x2x37

e The last register that needs to be set is the AIC control register. The data is held on
data page AIC_CTR which is accessed by LDP instruction.

e The accumulator is loaded with AIC_CTR value of 28h with a shift of 2. This sets
the transmit and receive sections to synchronous, sets gain of the preamplifier to 4
and deletes the bandpass filter.

e The least two significant bits are changed to 11b by adding 03h. This indicates that
the word is intended for the AIC control register. Figure 45 shows the final content
of the control register of AIC.

Control Register
d7 |d6 [d5 |d4 |d3 |d2 |d1 |d0
1 0 1 0 0 0 1 1

d2=0/1 deletes / inserts bandpass filter

d3=0/1 disables/enables loopback

d4=0/1 disables/enables AUX IN+ and AUX IN- pins

d5=0/1 Asynchoronous / synchronous transmit and receive sections
d6 =0/1 gain control bits

d7=0/1 gain control bits

d7 | dé Gain
1

0

1 2
0 4
1 1

Figure 45: Bits of AIC control register

e The data packet is the sent to the AIC by calling AIC2ND
e RET returns control to the main body of the program.

62 Literature Number: BPRA063

The Programming Process

Writing to AIC using AIC2ND

AIC2ND 1dp #0 ; Load data page zero
sach DXR ; Store upper acc to DXR
clrc INTM ; Enable interrupts
idle ; Idle until interrupt - TINT
add #6h, 15 ; Set 2 LSBs of upper acc high
sach DXR ; Store upper acc to DXR
idle ; Idle until interrupt - TINT
sacl DXR ; Store lower acc to DXR
idle ; Idle until interrupt - TINT
lacl #0 ; Store lower acc to DXR - flushing
sacl DXR ; make sure the word got sent
idle ; Idle until interrupt - TINT
setc INTM ; Disable interrupts
ret ; Return from call

Figure 46: Writing to AIC

e AIC2ND is the name of the function that is called to send information held in the
accumulator of 'C50 to the relevant AIC registers. The routine is called three times
in total, once for the A register (TA, RA), once for the B register (TB, RB) and also
once for theAlC control register.

® 'LDP #0' sets the data page to zero.

® 'SACH DXR' writes to the serial port register (DXR) which is located on data page
zero. The upper half of the accumulator is always zero with the lower half
containing the information to be loaded to the counters. The higher word is written
to DXR to fiush the register.

e Interrupts are then enabled by clearing the INTM bit which is necessary when
writing to the serial port.

e ‘IDLE’ then waits for the TINT interrupt.

e On TINT: DXR is written to XSR which directly passes to the AIC.

e 'ADD #6h, 15 adds 6h to the accumulator, followed by a shift of 15 steps to
the left. This sets the least significant bits of the upper half of the accumulator to 11.
When this is sent to AIC, it prepares for register alteration. AIC then uses the next
data packet it receives to alter the appropriate register.

e 'IDLE’ ensures that the processors waits until the data packet containing ‘11’ is
sent before writing to the serial port register again.

e The low half of the accumulator is then sent to DXR, the half which contains the
data to be written to the registers. Note that the two least significant bits tell the AIC
in which register to store the data. (Figure 39).

¢ To finish, zero is written to the DXR and sent on the next interrupt.

e Interrupts are disabled before return.

e RET returns the execution to the AIC routine.

TMS320C5x DSK Appiications Guide 63

The Programming Process

2.9.6 Main Program

The main program only performs one function; that is to wait for the next sample to
arrive. The AIC interrupts the main program which then branches to service the
interrupt before returning to the main program to wait for another interrupt.

7MAIN PROGRAM

WAIT idle ; Idle until interrupt
nop ; No operation
nop ; No operation
b WAIT ; Branch to WATT

Figure 47: PASS Main Program

e WAIT is a label as a reference to branch back. The idle command waits in a low
power mode until an interrupt. As the interrupts are enabled, ISR is executed from
this point.

e On returning from the interrupt service routine, the main program branches back to
WAIT where it begins once again.

2.9.7 Interrupt Service Routines

64

The PASS program reads the serial input port of the DSK and writes the output to the
serial output port. This reading and writing routine is performed at regular intervals
within the program. The AIC controls the times when this takes place by its sampling
rate, in this case 8,000 times a second.

RECEIVE INTLRI\UP’I SERVI\.]: ROU’IINE

RX 1ldp #0 ; Set data page pointer to zero

lamm DRR ; Read data from serial input register
and #0FFFCh ; Clear lower two (status) bit from acc
samm DXR ; Write lower acc to DXR
rete H Rcturn to main program

—TRANSMIT INTERRUPT SERVIC ROUTINE

TX rete H Ret_urn to main program

Figure 48: PASS Interrupt Service Routine

On receiving an interrupt, the program branches to ISR called RX. This is defined
within the interrupts section of the code. The ISR takes the sample from the input
serial port, and outputs it once again to the output serial port. The contents of DXR are
automatically transmitted. When DXR is empty, it generates a transmitter interrupt. On
return from the receiver ISR to the main program, processor now goes into TX ISR
and returns.

e RX s the label of the interrupt service routine.

Literature Number: BPRA063

The Programming Process

® 'LDP #0' sets the current data page to zero which is required as both DRR and
DXR as they are located on data page zero.

® 'LAMM DRR’ loads the accumulator with the value held in DRR, the serial port
input register. This 16-bit value is a digitized sample from the serial input of the
DSK.

® The codec only gives a resolution of 14 bits, the two least significant bits are used
as status bits and do not reflect the signal. By using the AND instruction, these two
least significant bits can be zeroed before sending the sample to the output.

® 'saMM' writes the lowest half of the 32 bit accumulator to DXR the serial port
transmit register.

* 'RETE' returns control of the program to the main program with interrupts enabled.

e TXis the label of the transmit ISR. This ISR has only a ‘RETE’ instruction. So when
a transmitter interrupt occurs, it automatically sends the contents of DXR via the
serial port.

We have now completed the review of PASS. Now by modifying PASS, we shall write

our first piece of real DSP code.

Before we proceed to the next section you could do a few experiments. Input a

sinusoidal signal at 20kHz and observe the output. Has the program stopped
functioning? (Hint: Consider the sampling frequency).

PROGRAM pass through =;
FILE NAME pass.asm =;
INCLUDE FILES ; no include files =
PROCESSOR ; TMS320CS5x =7
AUTHOR ;i Matt Byatt - Texas Instruments =;

5/ Ver 1.00 =;

DATE/VERSION ; July 199

H
A program that initialises the TMS320C50 DSK processor =;
and AIC codec. At a sampling rate of 8kHz, the board's =;
serial input port is read to the accumulator. ;

=7
Within the same ISR, the contents of the accumulator are =;
written to the serial output port without modification. =

The constant read and writinag continually passes the =
input signal to the output. =

FREQUENCY ; B8kHz =;
FILTER ; not present =i
MISC ; TLC320C40 initialised =i

; Assemble to data memory
; TA AIC value - Fcut = 8 KHz
; RA AIC value - Fcut = 8 KHz
; TB AIC value - Fs = 2*Fcut

TMS320C5x DSK Appiications Guide 65

The Programming Process

RB .word 37 ; RB AIC value - Fs = 2*Fcut
AIC_CTR .word 28h ; |LP xx Gl GO | SY AX LB BP|
P I B
;o GAIN | | | +-- BP Filter
o synch --+ | H----- Loopback
o
;o

Assemble to program memory
RINT b RX ; Branch to RX on receive interrupt
Branch to TX on transmit 1nLerrupL

kel
%}
o
@
o
Q
=

.ps 0a00h Assemble to program memory
.entry ; Mark program entry point
.text ; Text

START setc INTM ; Disable interrupts
1ldp #0 ; Set data page pointer to page zero
splk #0834h, PMST ; Write 16 bit pattern to PMST register
lacc #0 ; Load accumulator with number zero
samm CWSR ; Set software wait state to zero
samm PDWSR ; Set software wait state to zero
splk #022h, IMR ; Using XINT syn TX & RX
call AIC ; Initialize AIC and enable interrupts
clrc OVM ; Overflow mode is set to zero
spm 0 ; Product shift mode is set to zero
splk #012h, IMR Mask interruptg

Al e PR <

Enanile

~ e g

circ INTM

AuLcLLuyL:

WAIT idle ; Idle until interrupt
nop ; No operation
nop ; No operation
b WAIT ; Branch to WAIT
end of main program - Comment line

RX 1dp #0 ; Set data page pointer to zero
lamm DRR ; Read data from serial input register
and #0FFFCh ; Clear lower two (status) bit from acc
samm DXR Write lower acc to DXR

Return to main program

'RANSMIT INTERRUPT SLR ICL ROUTINE

AIC splk #20h, TCR ; To generate 10 MHz from Tout
splk #01h, PRD ; Load period counter with 1
mar *,ARO ; Modify AR pointer (used with GREG)
lacc #0008h ; Load acc with 08h
sacl SPC ; Store acc in SPC
lacc #00C8h ; Load acc with 0C8h
sacl SPC ; Set and reset SPC register
lacc #080h ; Initialise 8000h to FFFFh as global memory
sach DXR ; Store high acc to DXR
sacl GREG ; Store to global memory register

66 Literature Number: BPRA063

The Programming Process

ARO, #0FFFFh
#10000
*,0,ARO
GREG

AIC2ND 1ldp
sach
clrc
idle
add
sach
idle
sacl
idle
lacl
sacl
idle
setc
ret

RB, 2

#02h
AIC2ND
#AIC_CTR
AIC_CTR, 2
#03h
AIC2ND

Set ARO register

Set repeat counter
Access global memory
Disable global memory

Load data page TA

Set SXM for sign extension mode
Load accumulator with TA data
Load accumulator with RB data
Call function AIC2ND

Load data page TB
Load accumulator with TB data

; Load accumulator with RB data

Add 10b to set status bits

; Call function AIC2ND

Load data page AIC_CTR
Initialized control register
Add 11b to set status bits
Call function AIC2ND

Return from call

Load data page zero
Store upper acc to DXR
Enable interrupts
Idle until interrupt - TINT
Set 2 LSBs of upper acc high

; Store upper acc to DXR

Idle until interrupt - TINT

Store lower acc to DXR

Idle until interrupt - TINT

Store lower acc to DXR - flushing
make sure the word got sent

Idle until interrupt - TINT
Disable interrupts

Return from call

End of program

Figure 49: PASS through Program

2.10 A First Program

PASS will provide the basis for this section. We will modify various sections of PASS
to incorporate constants, different sample rates and different functions. Our aim is to
write a program that outputs a sine wave at about 800Hz. Let us firstly study some
theory that will help us with this program.

2.10.1 Theory

There are a number of ways to generate sine waves using DSPs. A look up table
could be used which would pre-store the sample values of a sine wave. Another
method is to design a digital oscillator. This is done by designing an unstable Infinite
Impulse Response (lIR) filter. Although we will use this method, we shall take an
equation which represents such an oscillator and use it. We shall not design it from
scratch. We shall call the this method ‘the equation method’. Equation method is
quite accurate and results in good quality sine waves. Our sine wave equation is:

)
J(m

=Ay

(n-1) + B'«“(u 2) + C"\-m—l)

TMS320C5x DSK Applications Guide 67

The Programming Process

This is a second order difference equation whose unit impulse response is sin (n o 7).
The unit impulse is x(-1) = 1. Applying this unit impulse to the equation above.

n=0 v, =4y, +By . +0=0

n=10 y,=Ayv, +By ,+C=C
Yo, =Aov, By, 0=y

Vo= Avs By,

RARN

1l
[}

n

1]
o8]

n

n=k vy, =Ay,,+By,

Once we evaluate the numerical values for A, 8 and (, we can calculate sine wave
samples. The following equations relate the coefficients to the frequency of the sine
wave and the sampling frequency:

A=2¢08(G, irs)

Qrorirs = 360

Ssnmwiivg
B=-1
C =500 Gi5)

It is important to calculate ‘4" and ‘C" correctly and accurately for a good quality sine
wave.

0 is governed by the Nyquist criteria and limits [, to @ maximum of half the
sampling frequency. Representing a sinusoid at this limit would give a low resolution
with significant amounts of harmonic distortion.

As 0 decreases, then the quality of the signal increases. In effect, the more samples
per period the greater the accuracy.

2.10.2 Calculations

The sampling frequency is already set at 8,000Hz. Let us decide on the frequency of
the sine wave and calculate the coefficients:

Sine wave output: 800Hz

Sampling frequency: 8,000Hz
Compute 0 first:

800

owswn 3002
: - 8000

DEGRELS =

[§] 360 = 36"

S SAMPLING

Placing this value in the coefficients equation above for A:

68 Literature Number: BPRA063

The Programming Process

A= 2008(Bypiprpg) = 2¢08(36")
A=2x0809017

B =1

C=sin(Gygpprs) = sin(367)
C = 058778

Our equation now becomes:

\

e

v, =2x 0809017y,

with an initial C value of 0.58778

Now we know all the coefficients but how can we use these with our DSP? The
TMS320C5x DSP is a fixed point device and therefore can only work using integer
numbers. Our coefficients are fractional numbers. Using the conventional methods of
implementation will not provide the accuracy required. Another means of
representation must be found to ensure that we achieve the correct sine wave
frequency.

If we assume that a full positive 16-bit register (7FFFh) equals 1 and negative 16 bit
register equals -1 (FFFFh) fractional numbers can be represented. Therefore, +0.5
would be 4000h and so on. We can therefore represent our fractional coefficients by
using this process, which is called 015 format:

S
O15=2" % fraction e .,

015 format gives us higher accuracy. Remember that we shall be using this
conversion formula in our programs. Let us now convert our fractional coefficients to
Q15 format:

Fraction Decimal Q15 Hexadecimal Q15
(rounded)
A= Q15 2 x 0.809017 2 x 26510 2 x 678Eh
C= Q15 0.5877853 19260 4B3Dh

* As our coefficient A is greater than 1, we must reduce it by an integer factor to prevent
overflow. This must be compensated for later in the program.

2.10.3 Example of Q15 multiplication

Now that our sine wave coefficients are converted into 015 format, we should be able
to calculate the sample values. But for this we need to be able perform a multiplication
of an integer with a Q 15 number. Let us evaluate:

AXSAMPLE

in the sinusoidal equation in 015 format. Multiply a sample value, say yv,,.;, by 4.

TMS320C5x DSK Appiications Guide 69

The Programming Process

Let us take an arbitrary sample value yy,.;,= 0.5.

AxSAMPLE =2x 0809017 x 0.5
Ax SAMPLE = 0809017

Ax SAMPLE (in Q15) = 0809017 x 2" = 26510, = 678 E 1 v v e
Now let us do the same calculation in © 15 format. A andy,,, in Q 15 format:
A =2x06T8Emxirenii = 2 x 26510

convert v, into Q15 format:

=05, % 2" = 16384 1, 1)

TR

Ve, = 4000 vnpcnin

To prevent overflow, multiply the sample only with the fractional 015 representation of
A first:

multiplication = 26510 pepyra X 16384 pecpygg, = 434 339 840 prepgar
multiplication = 6T8 EHENADECIMAL x 4000HEXADECIMAL = 19E3 8000 e vy peciaraL

Now the result can be scaled to full 4 by multiplying it by 2

multiplication =2, .., <434 339 840 .\, =868 679 680, 1,/
multiplication = 2 v, cngyy X 19E3 8000um.xioreni. = 33C7 0000mx1orcn

The following table shows the result in binary form as it would exist in a register:

Hex Binary
33C70000 | 0011 J 0011 [1100] 0111 [0000 | 0000 | 0000 | 0000

Left shift by one bit to normalise: On completing a fixed point multiplication, the two
most significant bits of the result are sign bits. Because the multiplication is done using
two’'s complement numbers, we need only one sign bit. Left shift by one bit gets rid of
one extra sign bit, leaving only one.

Hex Binary
678E 0000 | 0110 [0111 [1000 [1110] 0000]| 0000 | 0000 | 0000

70 Literature Number: BPRA063

The Programming Process

l Yoy

L X

l

[193 [

[193]

[e8e |

3
2
678E
l MULTIPLIER
multiply two values
8000 | Preg
move result to accumulator
8000 ACCUMULATOR
add result twice as only % A
0000 —I ACCUMULATOR
normalize by a one bit left shift,
remove extrasign bit
0000] ACCUMULATOR
result

Time should be taken in verifying the details for yourself to understand this

multiplication process.

2.10.4 The Program

The program should be designed to calculate the samples of the sine wave. This is
straightforward since we already know the equation, initial value 'C’ and coefficients
‘A" and 'B". Figure 51 shows how the samples are calculated using the equation. It is
important to note that to compute the first sample v(n), v(n-1) is equal to *C" and

1(n-2)=0.

TMS320C5x DSK Applications Guide 71

The Programming Process

> Va2 ¥, is calculated using previous
— Y sample values using the equation:
I—> Yu ¥a=2x0.809017 3y~ Yy

—
~

Figure 51: Sine wave generation

The main program is simple and only waits for interrupts. Transmit ISR calculates the
new sine wave sample value and outpuls it to AIC. Figure 52 shows a detailed
flowchart of the program. Let us now make modifications to PASS to convert it to
SINE.

Y A

Main Program Interrupt
—
Wait for interrupt set data page
clear acc and Preg

load accumulator
with Y1 and negatg

multiply Y with
COEFF and data
move

output routine

e to

store to memory

accumulator with 015 format

Figure 52: Sine Wave Program

72 Literature Number: BPRAO63

The Programming Process

2.10.5 From PASS to SINE
Let us examine the modifications section by section.

TA

RA
TB
RB

.ds 0f00h ; Ausemble to data memory
data
.word 17 ; TA AIC value Fcut = 8 kHz
.word 17 ; RA AIC value - Fcut = 8 kHz
.word 37 ; TB AIC value - Fs = 2*Fcut
.word 37 ; RB AIC value - Fs = 2*Fcut
AIC_CTR .word 8h ; |LP xx G1 GO | SY AX LB BP|
PR B +
P GAIN | | | +-- BP Filter
P Synch --+ | 4----- Loopback
P Auxin ----- +
; + (sinx)/x filter
.word 9630 ; 19260/2=C/2 Initial Y value, Sin()
.word 0000h ; Seccndary Y value
.ds 01000h ; Assemble to data memory

COEFF .word 0678Eh

Sine wave ‘Lecugncy uoeff1c1ent(A/2)Cos()

Figure 53: Sine Wave Generator Settings

In PASS the coefficients assembled into data memory were only used to initialise
the DSK's AIC circuitry. In SINE we shall store scme more data values and reserve
data memory for storage.

"Y' is an initial sample value to start off the sine calculation. (Y = C =y). After the
first calculation, it is used as storage space for the same sample value. ‘Y1’ is a
storage space for secondary sample value. (Y1 =y .). Note that one-half of C is
used and this will be compensated for later.

‘COEFF' is the value of ‘4/2' coefficient in the sine equation. It determines the
frequency of the sine wave. Again, this is one-half of the actual ‘4’ and will be
compensated for in the calculations later. The reason for using half of the values is
to prevent overflow.

.ps 0A0Oh Assemble to program memory
.entry ; Mark program entry point
.text ; Text

START setc INTM ; Disable interrupts
1dp #0 ; Set data page pointer to page zero
splk #0834h, PMST ; Write 16 bit pattern to PMST register
lacc #0 ; Load accumulator with number zero
samm CWSR Set software wait state to zero
samm PDWSR Set software wait state to zero

call AIC Initialise AIC and enable interrupts

splk #022h, IMR ; Using XINT syn TX & RX

; Overflow mode is set to zero

TMS320C5x DSK Appiications Guide 73

The Programming Process

spm 0 ; Product shift mode is set to zero
splk $#022h, IMR ; Mask interrupts
; Enable interrupts

Figure 54: Sine Wave Processor Initialisation

e Processor is initialised as in PASS.
e We are using the transmit interrupt, not the receive. This is because we are

generating the sine wave and transmitting the samples to the AIC. Therefore the
interrupt mask is changed to mask the receive interrupts and to enable the transmit
interrupts.
"SPLK #022h, IMR’ writes 22h to the IMR register enabling the transmit
interrupts.

; Wait until interrupt
nop ; No operation

nop ; No operation
b WAIT ; Branch to WAIT
;---- end of main program ------ ; Comment line

Figure 55: Main program

e Main program does nothing else but to wait for interrupts.

;= TRANSMIT INTERRUPT SERVICE ROUTINE

ldp #Y ; Load data page Y

zap ; Clear acc and product register
lacc Y1l,15 ; Load acc with Y1 with shift of 15
neg ; Negate accumulator

macd COEFF,Y ; Multiply with data move (Y * COEFF)
; Double the result

apac
apac since A/2 and C/2
sach Y,1 remove sign bit

lacc Y Load Y into lower acc

; Clear lower two (status) bit from acc
; Write lower acc to DXR
; Return to main program

1dp #0 ' load data page zero
samm DXR

Figure 56: Sine Wave ISR

Literature Number: BPRA063

The Programming Process

The ISR generates a sine wave using three values stored in memory;
Y=v., ISR result calculated last time, initial value (72

M=y, ISR result calculated time before last

COEFF = 4/2 coefficient in the sine equation.

You can follow the calculations below from Figure 57 which gives a pictorial
representation of register events.

Firstly, as we are using the data page system of addressing, we select the data
page that contains our information - data page V.

We then clear the accumulator and the product register of previous values using
‘ZAP’. This is essential in order to ensure that the MACD instruction used later does
not use the previous multiplication result.

Y1 is loaded into the accumulator with a shift of 15 places to the left. This places)1
in upper accumulator and converts it into 015 format. (Remember Y1 in 015 format
=2"x Y1).

"NEG' negates the contents of the accumulator to give -Y1since B = -1.

This is a complex instruction, demonstrating what the 'C5x can achieve in a single
cycle. “MACD COEFF, Y’ multiplies the COEFFicient by the) value with a data
move. The result of the multiplication is written to the product register. The data
move copies the contents of ¥ into Y1 before the multiplication (the next memory
location). Thus }1 becomes), ready for next time round.

The product is added to the accumulator twice. This compensates for the fact that
our COEFF and ‘(" values are only halves of actual values (.1 = 2x678Eh & C =
2x9630).

This instruction again demonstrates the power of the 'C5x. * SACH Y, 1* instruction
copies the accumulator into a temporary register. Left shifts the entire register by
one bit and then copies the upper 16-bits into data memory location ‘Y'. The
process removes the extra sign bit gained in two's complement multiplication.
Finally, the sine wave output value is loaded into the lower accumulator before the
lowest two bits are cleared and the result is written to the DXR.

TMS320C5x DSK Appiications Guide 75

The Programming Process

CODE ACCUMULATOR PRODUCT REGISTER
oy 000 (00 1w
zap
from memory: Y1
lace Y115 i o ki o
neg By o0 000 (00
macd COEFFY vi o COLRE Y
apac JCOLFEY - COLET ")
apac .
to memory: Y
JCoLrry i COLEF *)
sach Y LOLEE ™Y
lace Y oy -y COLEL Y
and #OFFFCh Sconr b CCorfrry
to scrial port
samm DXR o SCOETEY 1w COLfEr Y

Figure 57: Register Based MAC

2.10.6 Running the program

With a completed program, assemble the SINE.ASM code and then
using either the loader or the debugger as with PASS. ASM.

A sine wave of approximately 800Hz should be created at the output of the AIC. If
your modifications have not quite worked, we have included a working version of the
software on the disk. Compare your modifications against this program and spot the
mistakes.

run the program

LA L N | B |

Sine:

PROGRAM

FILE NAME
INCLUDE FILES
PROCESSOR

AUTHOR
DATE/VERSION

and AIC codec. At a

sine wave generator
sine.asm

; no include files
; TMS320C5x%

; Matt Byatt

- Texas Ins

A program that initialises the TMS320C50 DSK processor
sampling rate of 8kHz,

performs a serial inpu port dummy read.

An internal digital oscillator program generates a sine

waveodification.

the DSK

truments

L | 1R

76

Literature Number: BPRA063

The Programming Process

AIC_CTR .word

Y word

Y1 word
;.ds

COEFF .word

The frequency of the sine wave can be altered by changing
the coefficent values within the data table.

FREQUENCY ;
FILTER ; not present
MISC H FIC&20C4O 1n;t1allqed

; Assemble to data memory

i TA AIC value - Fcut = 8 KHz
RA AIC value - Fcut = 8 KHz

; TB AIC value - Fs = 2*Fcut

; RB AIC value - Fs = 2*Fcut

8h ; |LP xx Gl GO | SY AX LB BP|
P .
P GAIN | | | +-- BP Filter
P Synch --+ | +----- Loopback
P Auxin - --- -+
; + (sinx)/x filter
9630 7 (19260/2) Initial Y vaiue, sin()/2
0000h ; Secondary Y value
01000h ; Assemble to data memory

0678Dh Sine wave ‘reqwen:y coef

080ah ; Assemble to proygram memory

.ps
RINT b RX ; Branch to RX on receive inrerrupt
XINT b TX Branch to TX on transmlL interrupt

S

.ps OaOOh ; Assemble to program memory

.entry ; Mark program entry point

- text ; Text
START setc INTM ; Disable interrupts

1dp #0 ; Set data page pointer to page zero

splk #0834h, PMST ; Write 16 bit pattern to PMST register

lacc #0 ; Load accumulator with number zero

samm CWSR ; Set software wait state to zero

samm PDWSR ; Set software wait state to zero

splk #022h, IMR ; Using XINT syn TX & RX

call AIC ; Initialize AIC and enable interrupts

clrc OVM ; Overflow mode is set to zero

spm 0 ; Product shift mode is set to zero

splk #022h, IMR ; Mask interrupts

clrc

INTM ; Enable interrupts

end of main program ----

; Wait until interrupt
; No operation
; No operation
WAIT ; Branch to WAIT
; Comment line

TMS320C5x DSK Appiications Guide 77

The Programming Process

TRANSMIT INTERRUPT SERVICE ROUTINE

1dp #Y ; Load data page Y

zap ; Clear acc and product register
lacc Y1,15 ; Load acc with Y1 with shift of 15
neg ; Negate accumulator

macd COEFF,Y ; Multiply with data move (Y * COEFF)
apac ; Double the result

apac ; Since A/2 and C/2

sach Y, 1 ; Out of Q15 format

lacc Y ; Load Y into lower acc

ldp #0 ; load data page zero

and #0FFFCh ; Clear lower two (status) bit from acc
samm DXR ; Write lower acc to DXR

Return to main program

splk #20h, TCR ; To generate 10 MHz from Tout

splk #01h, PRD ; Load period counter with 1
mar *, ARO ; Modify AR pointer (used with GREG)
lacc #0008h ; Load acc with 08h
sacl SPC ; Store acc in SPC
lacc #00C8h ; Load acc with 0C8h
sacl SPC ; Set and reset SPC register
lacc #080h ; Initialise 8000h to FFFFh as global memory
sach DXR ; Store high acc to DXR
sacl GREG ; Store to global memory register
lar ARO, #0FFFFh ; Set ARO register
rpt #10000 ; Set repeat counter
lacc *,0,AR0 ; Access global memory
sach GREG ; Disable global memory
1dp #TA ; Load data page TA
setc SXM ; Set SXM for sign extension mode
lacc TA,9 ; Load accumulator with TA data
add RA, 2 ; Load accumulator with RB data
call AIC2ND ; Call function AIC2ND
1ldp #TB ; Load data page TB
lacc TB,9 ; Load accumulator with TB data
add RB, 2 ; Load accumulator with RB data
add #02h ; Add 10b to set status bits
call AIC2ND ; Call function AIC2ND
1ldp #AIC_CTR ; Load data page AIC_CTR
lacc AIC_CTR,2 ; Initialized control register
add #03h ; Add 11b to set status bits
call AIC2ND ; Call function AIC2ND
ret ; Return from call

AIC2ND 1dp #0 ; Load data page zero
sach DXR ; Store upper acc to DXR
clrc INTM ; Enable interrupts
idle ; Idle until interrupt - TINT
add #6h, 15 ; Set 2 LSBs of upper acc high
sach DXR ; Store upper acc to DXR
idle ; Idle until interrupt - TINT
sacl DXR ; Store upper acc to DXR

3

Literature Number: BPRA063

The Programming Process

idle ; Idle until interrupt - TINT

lacl #0 ; Store lower acc to DXR - flushing
sacl DXR ; make sure the word got sent

idle ; Idle until interrupt - TINT

setc INTM ; Disable interrupts

ret ; Return from call

.end ; End of program

2.11 From Sine to Musical Notes

Musical notes are a combination of sine waves at different frequencies. Since we can
now generate sine waves at practically any frequency, we should be able to generate
musical notes.

2.11.1 Background

A musical note consist of a fundamental frequency and a number of harmonics. First
harmonic frequency is twice the fundamental frequency and one-half the amplitude of
the fundamental. The second harmonic is three times the frequency and one-third of
the amplitude of the fundamental and so on. Higher harmonics above the seventh
harmonic are negligible. Figure 58 shows a musical note with its seven harmonics.

~

Amplitude
A

A2

A/3

Ald
| AJ’5 Ale A7
1 I —

\ 0 f 2f 3f 4f 5f 6f 7f Frequench

Figure 58: A musical note

The quality of a musical synthesiser relies heavily on the number and quality of
harmonics generated to make up a musical note. In fact by modifying the way that the
harmonics decay away, one can generate musical notes closely imitating various
musical instruments such as a piano or a guitar.

Musical notes are grouped into octaves. An octave consists of seven or more musical
notes ‘Do, Re, Mi, Fa, Sol, La, Si'. Figure 59 shows the fundamental frequencies of
musical notes grouped into octaves.

TMS320C5x DSK Appiications Guide 79

The Programming Process

OCTAVE
NOTE FREQUENCIES (Hz)

NOTE 0 1 2 3 4 5 6 7 8 9 10

DO 13.7 [27.5 |55.0 [110.0 [220.0 {440.0 | 880.0 | 1760.0 |3520.0 | 7040.0 |14080.0
RE 154 309 |61.7 [123.5 [247.0 [493.9 | 987.8 |1975.7 |3951.3 | 7902.7 |15805.3
Ml 16.4 [32.7 |654 [130.8 |[261.6 |523.3 | 1046.6 |2093.2 |4186.5 | 8372.9 |167458
FA 18.4 |[36.7 {734 [146.8 |[293.7 |587.4 | 1174.8 | 2349.7 |4699.5 | 9398.9 |18797.8
SOL (206 ([41.2 [824 |[1649 |329.7 |659.4 | 1318.8 | 2637.7 |5275.3 | 10550.6 [21101.3
LA 218 |43.7 |87.3 |174.7 |349.3 [698.7 [1397.3 |2794.6 [5589.2 | 111784 |22356.8
Si 244 |49.0 [98.0 [196.1 [392.1 |784.3 [1568.2 |3137.1 |6274.1 | 12548.2 | 25096.4

Figure 59: Musical Note frequencies and octaves

2.11.2 Implementation

In our musical note generator, we shall implement all frequencies in Octave 6. For
simplicity we shall use a single sine wave with no harmonics at each frequency.
However, once we are successful in creating the notes, we can then enhance the
program to generate musical notes with the related harmonics.

To generate sine waves at each of Octave 6 frequencies, we shall need to calculate
the ‘4’ coefficient value and 'Y’ the initial sample value for each frequency. The
following table shows these values. Note that ‘A’ and ‘C’ values are halved and
converted into Q15 ready to be used in our Octave 6 generator.

NOTES | FREQHz | COEF COEF Y Y
A2 |Q15DEC| C/2 |Q15DEC

DO 880 0.771 25264 | 0.319 | 10453
RE 987.8 | 0.714 23396 | 0.35 11469
Mi 1046.6 | 0.681 22315 |0.366 | 11993
FA 1174.8 | 0.604 19792 | 0.399 | 13074
SOL 1318.8 | 0.51 16712 1043 14090
LA 1397.3 | 0.456 14942 | 0.445 | 14582
Si 1568.2 | 0.333 10912 | 0.472 | 15466

Figure 60: Coefficients for Octave 6 frequencies

Octave 6 program is designed to play all the musical notes in octave 6 sequentially.
The program runs in a loop repeating the notes until stopped. Figure 61 shows the
flow of the program. All the functionality of the program is in the transmitter interrupt
service routine.

80 Literature Number: BPRA063

The Programming Process

2.11.3 Octave 6

Main Program

Wait for interrupts

Interrupt

—

no

Note duratio SLLL .
ended?
yes

Find out which
note is playing
now

Move auxiary
pointers to next
note

Genetate a sine
wave sample and
output

[

Figure 61: Octave 6 program flow

Let us now examine in detail the implementation of Octave 6 musical notes generator.
The AIC settings and sampling frequency rcmain the same at 8,000Hz. The musical
notes table places the constants required to generate each frequency in data memory
with appropriate labels. These labels will be used later to access the data values.
TIME defines the duration that a musical note is to be played. This is set at
approximately half of one second.

; note table
; fn = f note/f sampling
; Y/2 in Q15 format
; A/2 = cos(fn*360) in Q15 format
do ;880Hz
word 10453 ;Initial Y = [sin(fn*360)/2] Q15
word ;Secondary Y value
docoef
word 25264 ;cos (fn*360) in Q15
re
word 11469 ;987Hz
word 0
recoef
word 23396 ;coeff value
mi
word 11993 ;1046Hz
.word 0
micoef
.word 22315 ;coeff
fa
.word 13074 ;1174Hz
.word 0 ;

TMS320C5x DSK Applicaiions Guide 81

The Programming Process

82

facoef
.word 19792 H
sol
.word 14090 ;1318Hz
.word 0
solcoef
.word 16712 H
la
.word 14582 ;1397Hz
.word 0
lacoef
.word 14942 H
si
.word 15466 ;1568Hz
.word 0
sicoef
word 10912 ;
; end of note table--------------- ;
TIME .word 1000h ; initial time, 0.4 seconds
; to change time change this value and the reload value in TX INT

Figure 62: Octave 6 musical notes data table

Interrupt settings and processor initialisation remain the same with the exception of
initialisation of auxiliary registers AR1, AR2 and AR3.

.ps 080ah ; Assemble to program memory
RINT b RX ; Branch to RX on receive interrupt
XINT b TX ; Branch to TX on transmit interrupt

ROCESSOR INITIALISATION

.ps 0a00h ; Assemble to program memory
.entry ; Mark program entry point
.text ; Text

START setc INTM ; Disable interrupts
1dp #0 ; Set data page pointer to page zero
splk #0836h, PMST ; Write 16 bit pattern to PMST register
lacc #0 ; Load accumulator with number zero

; Set software wait state to zero
samm PDWSR ; Set software wait state to zero
; Using XINT syn TX & RX

call AIC Initialise AIC and enable interrupts
clrc OovM ; Overflow mode is set to zero
spm 0 ; Product shift mode is set to zero
clrc SXM
lar arl, #do ;point to first note
lar ar2, #docoef ;point to first coefficient
lar ar3, #TIME ;point to note length
splk #022h, IMR ; Mask interrupts
clrc INTM ; Enable interrupts

Figure 63: Interrupt Settings and Processor Initialisation

Literature Number: BPRA063

The Programming Process

e 'LAR AR, #DO’ instruction loads the address of ‘DO’ to AR1. This points AR1 to
initial sample value Y of musical note ‘DO".

e ‘LAR AR2, #DOCOEF’ instruction loads the address of the coefficient (A/2) for the

musical note ‘DO’ to AR2.
‘LAR AR3,#TIME’ instruction points AR3 to location TIME which holds a
constant for the duration of a single note.

Loading of these auxiliary registers are in preparation for playing the first note.

Transmit interrupt service routine starts with a delay subroutine and a number of note
selection branches. Delay subroutine ensures that a note is played for about half a

second. We shall examine that later.

;= TRANSMIT INTERRUPT SERVICE ROUTINE ;
TX
call DELAY ;time a note is played for
sub #1 ; end?
bcnd nochange, NEQ ;1f at end reload timer counter
lacc #1000h ;reload timer counter
mar *,arl
sacl * ;store time for decrement
lamm ar2 ; check where we are
sub #docoef, 0 ; is it DO
bend setre, EQ ; if DO set to RE
lamm ar2
sub #recoef, 0 ;is it RE
bcend setmi, EQ ;if RE set MI
setdo
lar arl, #do ; if none of the above
lar ar2, #docoef ; set DO
b newfreq ; start again
setre
lar arl, #re ; point to RE in note table
lar ar2, #recoef ; point to RE coefficient in note table
b newfreq
setmi
lar arl, #mi ; point aux regs to MI
lar ar2, #micoef
b newfreq

Figure 64: Note selection in transmit ISR

e 'SUB #1' and subsequent ‘BCND nochange, NEQ’ instructions check the

parameter returned by DELAY subroutine to check whether a note change is
necessary. If it is not, program branches to a location *NOCHANGE’ and previous

TMS320C5x DSK Applications Guide 83

The Programming Process

84

note is played. If time is up, the following instructions will ensure that a new note will
be pointed to.

e 'LACC #1000h’, “MAR *,AR3’ and ‘SACL =+ instructions ensure that the
location TIME is loaded with a fresh count ready for next note. Remember that AR3
points to TIME. ‘MAR instruction loads ARP with 3 and makes AR3 current.

e ‘LAMM AR2’ loads the accumulator with the contents of AR2. ‘suB
#docoef, 0’ compares it with the address of the note DO's coefficient. If AR2 is
found to be pointing to this, the program branches to a location ‘setre’. If AR2 is not
pointing to this note's coefficients, following group of instructions check which
note's coefficient it is pointing to. These instructions effectively implement the
equivalent of the ‘CASE’ statement in C.

e let us examine one group of ‘setxx’ instructions as the rest achieve the same
functionality. ‘T.AR AR1, #re’ points AR1 to a location ‘re’ in the musical note
table. 'LAR AR2 #recof' points AR2 to the coefficient of note ‘re’. ‘B NEWFREQ'
implements an unconditional branch to a location ' NEWFREQ" .

The following section of the code start with locations * NEWFREQ' and ‘NOCHANGE'.
This section is a sine wave generator. This is the same sine wave generator code as
in the previous section with just two exceptions. The first is that AR1 is expected to
point to the sample value ‘Y’. The second is that AR2 is expected to point to
coefficient ‘A’. This was the reason for loading AR1 and AR2 with the appropriate
values for the note ‘DO’ in the processor initialisation section of the program.

nochange

newfreq

note generation

; arl --> Y, ar2 --> coeff
; arl moves from Y to Y1

zap ; Clear acc and product register

; acc = -B*Yl

mar *,arl ;make arl current

mar *+,arl ;point to next value Y1

lacc *-,15,ar2 ;Load acc with Y1 with shift of 15,arl->Y
neg ;Negate accumulator (-B)

;. tregl0 = coef
: arl --> Y
;. preg = coef*Y

1t *,arld ;load tregO=coeff, make arl current
mpy * ;coeff*Y & place in preg, arl current
dmov * ;Y->Y1 for next time round

apac ;Add product register to acc

apac ;all coeffs halved

sach *,1 ;remove sign bit

lacc * ;load sample to send

ldp #0 ;load data page zero

and #OFFFCh ;Clear lower two (status) bit from acc
samm DXR ;Write lower acc to DXR

rete ;Return to main program

Figure 65: Musical note generation

Literature Number: BPRA063

The Programming Process

Receiver interrupts are not used and not enabled. So the program has just an 'RETE’
for receiver interrupt service routine just in case.

The length that a note is played is decided by DELAY subroutine. This subroutine
expects AR3 to point to a memory location which contains a number to be counted
down. It returns a ‘1" in accumulator if the count has finished, and returns a 2" in the
accumulator if count has not yet finished. To keep the complexity of the program to a
minimum, DELAY was implemented as a counter. This makes the actual delay in time
dependant on the number of instructions that are executed. Ideally, timer interrupts
should be used. But DELAY is sufficient for our purposes.

played, decrements TIME constant

; IN: AR3 --> TIME
; OUT: finished acc=1l, not yet acc=2

DELAY
mar *,arl ; make ar3 current
lacc * ;lcad count value ->acc
sub #1 ; decrement one
sacl * ; store
bend carryon,GT ; if not finished, carry on
lacc #1 ; finished acc=1
b finish
carryon
lacc #2 acc=2
finish ret acc-1 ;return with parameter in acc

Figure 66: DELAY subroutine

e '‘MAR *,AR3 and ‘LAcC *‘ make ARS3 current and load accumulator with the
contents of the memory location that AR3 points to respectively.

e ‘SUB #1' and ‘sacL *‘ decrement the count and store it back in its previous
location.

e “BCND carry on, GT* branches if the count has not yet reached ‘0’

e |f the count has reached ‘0’, the branch falls through to * Lacc #1° which places a
‘1" in the accumulator.

e ‘B finish’ is an unconditional branch out of the subroutine with ACC=1

e 'LACC #2' instruction ensures that acc=2 if the count has not finished.

2.11.4 Running the program
You can run ‘ocatve6’ from the debugger or by directly loading it using DSK5L loader.
It will play the notes in octave 6 sequentially. The program provides a good basis for
improvements.
The first improvement could be to add the harmonics to make the notes sound richer.
For this you will need to calculate the appropriate frequencies and the necessary
coefficients. ‘NOTES6.XLS’ is a spreadsheet in MS-EXCEL which has all the

TMS320C5x DSK Appiications Guide 85

The Programming Process

necessary formulas for coefficient calculations. Once these calculations are done, you
can create a new table for harmonics. To generate the sine waves requires some care
and thought. Add just one harmonic first. Then the same method can be extended to
all the harmonics.

To add just one harmonic to the fundamental frequency, before the calculated
fundamental sample is output, point ARt and AR2 to the appropriate memory location
and run the sine sample calculation again, add the previous and this result and output
it. Do not forget to reset AR1 & 2 back to their original locations.

A sensible way forward after the first harmonic could be to make the sine calculation
into a subroutine. In any case these changes should provide you with several
rewarding hours.

2.12 A PC Controiled Tune Generator

We now know how to generate a sine wave and how to add functionality to the basic
sine wave program to produce a tune generator. However in the current version of the
musical note generator we can not change the notes unless we re-assemble the
program.

In this section we shall develop a program which allows us to control the note being
played from a PC. This necessitates writing two programs; One which runs on the
DSK which receives information and generates the desired sine wave and one on the
PC which downloads the program to the DSK and allows the user to send information
to the DSK.

We shall first closely examine how DSK communicates with a PC via RS232 port.
Building on this we shall develop our tune generator.

2.12.1 Background

The PC communicates with the DSK via the RS232 serial port. The DSK does not use
a its own on-chip serial port for communication but simulates the RS232 serial
transmission by using the BIO (Branch Control Input) for the RX line and the XF
(External Flag) pin for the TX line. The DSK also uses the DTR (Data Terminal Ready)
line to reset the DSK. The connections are as follows:

86 Literature Number: BPRA063

The Programming Process

o Do o
L L
] pTR-A I INT2
==

Figure 67: 'C5X DSK RS232 connections

It should be noted that the RX pin also connects to both BIO and INT2. This allows an
RS232 to be interrupt driven.

Kernel Loading

The DSK is reset by driving DTR low which in turn drives RS low. After a short period
of time the DTR line is raised to allow the 'C50 to start loading the communication
kernel. Once the communication kernel is loaded it waits for the BIO (RX) pin to go
low, indicating the first incoming start bit. On boot-up, the DSK does not know at what
baud rate the PC is going to communicate. This problem is solved by counting the
number of cycles that elapse over the length of this first start bit. Knowing this allows
the DSK to calculate the Baud Rate. Once the DSK has received this first character it
will send an ESC (27) character back to the PC at the correct baud rate to indicate
that it has successfully synchronised with the PC. At this point the communication
kernel is ready to receive commands.

Kernel Communication
The kernel accepts the following commands from the PC:

Mnemonic | Value Sent | Description

DD 00h Dump Data

DP 01h Dump Program

LD 02h Load Data

LP 03h Load Program
XCH_PGM | 04h Exchange Program
XG 05h Execute/Go

The kernel echoes all data sent back to the PC. This allows software on the PC to
verify if the data has been received correctly by the DSK. The writer of the PC
software has the choice of re-sending an instruction or aborting. When the DSK
transmits data it does not expect the PC to echo the data back to it. When the PC
needs to transmit a word (2 bytes) the low byte is sent first followed by the high byte.

TMS320C5x DSK Applications Guide 87

The Programming Process

The PC needs to transmit words for addresses, data, and opcodes. The DSK will still
echo back each byte it receives.

The procedure for receiving a word from the DSK is slightly more complicated. The PC
needs to first send a sync byte (0) to the DSK to initiate the transfer. The DSK will then
send the most significant byte and wait for another sync byte from the PC and will then
send the low byte of the word.

DD - Dump Data

This command is used for receiving data from the DSK. The PC sends the command
DD (00h) to the DSK followed by the starting address and the number of words to be
retrieved. The DSK will then start transmitting the data on receiving a sync(0)
character from the PC.

DSK
echo DD

PC

DD

Address low byte
Address high byte
Length low byte
Length High byte
null (initiate receive)
null

null (initiate receive)
null

echo Address low byte
echo Address low byte
echo Length low byte
echo Length high byte
Data high byte (first word)
Data low byte

Data high byte (last word
Data low byte

DP - Dump Program

Similar to the last command except that it is used for receiving program data from the
DSK. The PC sends the command DP (01h) to the DSK followed by the starting
address and the number of words to be retrieved. The DSK will then start transmitting
the data on receiving a sync(0) character from the PC.

PC

DSK

DP

Address low byte
Address high byte
Length low byte
Length High byte
null (initiate receive)
null

null (initiate receive)
null

echo DP

echo Address low byte

echo Address low byte

echo Length low byte

echo Length high byte
Opcode high byte (first word)
Opcode low byte

Opcode high byte (last word
Opcode low byte

Literature Number: BPRA063

e

The Programming Process

LD - Load Data

This command is used for loading data into the DSK. The command can also be used
for initiating memory mapped registers. The PC sends the command LD (02h) to the
DSK followed by the starting address and the number of words to be sent. The PC
then transmits the words.

PC DSK
LD echo LD
Address low byte echo Address low byte
Address high byte echo Address low byte
Length low byte echo Length low byte
Length High byte echo Length high byte
Data low byte (first word) | echo low byte
Data high byte echo high byte

Data low byte (last word) | echo low byte
Data high byte echo high byte

LP - Load Program

This command is used for loading program code into the DSK. The PC sends the
command LD (03h) to the DSK followed by the starting address and the number of
words to be sent. The PC then transmits the words.

PC DSK
LP echo LP
Address low byte echo Address low byte
Address high byte echo Address low byte
Length low byte echo Length low byte
Length High byte echo Length high byte
opcode low byte (first word) | echo low byte
opcode high byte echo high byte

opcode low byte (last word) | echo low byte
opcode high byte echo high byte

XCH_PGM - Exchange Program

This command is only really of use if you are writing your own debugger software. The
command allows the user to substitute a new program word at a specific address. The

TMS320C5x DSK Appiications Guide 89

The Programming Process

original program opcode is returned. The primary use of this is to set break points in
the software.

PC DSK
XCH_PGM echo XCH_PGM
Address low byte echo Address low byte
Address high byte echo Address low byte
opcode low byte echo opcode low byte
opcode High byte echo opcode high byte
null (initiate receive) | original opcode high byte
null original opcode low byte

XG - Execute/Go

This command is used to initiate program execution on the DSK. The PC sends the
command XG(05h) followed by the starting address. The PC then sends a sync(0) to
start the DSK code running from the given address. Once the DSK is running, any
further characters from the PC will cause the currently running program to halt.

PC DSK
XG echo XG
Address low byte echo Address low byte
Address high byte echo Address low byte
null (start DSK running)

2.12,.2 Using RS232 communications in assembly programs

90

The previous section described how to send and receive data using the
communication kernel on the DSK. However the above only applies whilst the DSK is
not running the users code. If you want to transmit and receive data within your
program then you need some assembly code to handle the transmission and the
reception. Transmission will be described first as this is simpler.

The method used to implement serial transmission is to place the required character in
the accumulator. The character is then rotated through carry, one bit at a time and the
external flag (XF) is set depending on the value of carry. Since XF is connected to TX
line of RS232, after eight bit rotations the entire character will have been sent.

In entering the subroutine the carry flag is cleared, as this is used to determine if a
one or zero should be transmitted to the RS232 port. The counter is now set up and
defines how many times we should go around the inner loop of the subroutine to
transmit the bits of a character. The section from nextbit01 to sbit01 is where we
decide to transmit a one or zero. As we have already cleared the carry flag we will
transmit a zero. This is the start bit which indicates the start of an RS232 character. At
sbit00 we cause the correct delay by repeating the instruction ‘mar *, ar5:'.

We only actually need to execute this instruction once but repeatedly executing it does
not present any problems and saves the use of a nop instruction. Once we have
executed the delay the accumulator is rotated right through the carry flag. This means

Literature Number: BPRA063

The Programming Process

that the value which was in the LSB of the accumulator is now in the Carry flag. Using
this we can test the value of each bit in the character to be sent. Now that we have the
value in the carry flag we branch back to nextbit01 to test its’ value. banz nextbit01,*-
instruction causes a branch back unless the count on auxiliary register 5 (ar5) has
reached zero. Once we have transmitted the 8 bits the loop exits and the two stop bits
are sent by setting the pin (XF) high and delaying twice. The subroutine then returns.

TXBYTE:
clrc c¢ ;start bit = 0
lar ars, #8 ;counter = 1 startbit + 8 data + 2 stop
nextbit01:
bend sbit0l,nc ;if c=1 send 1 else send 0
setc xf
b sbit00
sbit01:
clrc xf
sbit00:
Ipt #BITLEN ; delay for data bit

mar *,arb
ror
banz nextbit01,*-

setc xf ; send stop bits
rpt #BITLEN

nop

rpt #BITLEN

nop

ret

Figure 68: Serial transmission routine

The critical part of the code is the part setting the delay between sending bits as this
determines the baud rate. The following is a table of suitable values for delays.

Table 11: Delay values for serial communications

Baud Rate | BITLEN | BITLEN2 | BITLEN (interrupts) | BITLEN2 (interrupts)
57600 345 169 310 155
19200 1039 518 920 460

9600 2078 1039 1860 960
4800 4156 2078 4156 2078

A few things are worth noting. The constant BITLEN2 is half the length of BITLEN and
is used in the receive routine. The values of BITLEN assume that that this code is not
interrupted by any other code. If your program is using interrupts such as reading and
processing data from AIC, then you will need to use smaller delay values. Initial
starting values are shown in the last two columns BITLEN (interrupts) and BITLEN2
(interrupts). The alternative is to mask any interrupts. However this may not be an
acceptable option.

Receiving data is slightly more complicated. If a character is sent, then the DSK will
immediately halt and enter the DSK communication kernel. The two options are to
disable the interrupt that the DSK uses or install a new interrupt. Disabling the

TMS320C5x DSK Appiications Guide 91

The Programming Process

92

interrupt is very simple. Most of the example code for the DSK will have code similar
to the following:

SPLK #022h, IMR ; Using XINT

which enables INT2 for the kernel software and the serial port transmit interrupt. To
disable the communication kernel change this line to:

SPLK #020h, IMR ; Using XINT

INT 2 has now been disabled. It is very important to realise that once this has been
done it is no longer possible to use the debugger to control or debug your
program.The following code can be used for receiving a character:

RXBYTE:
rpt #BITLEN
nop
wait01:
bendd start01l,bio ; wait for start bit
lar ars,#7 ; delayed branch filled
lacl #0
b wait0l
start01:
rpt #BITLEN2 ; wait for half bit length
nop
mar *,ARS
wbit01:
sfr
rpt #BITLEN
nop
bend zbit01,bio
add #80h ; set bit in accumulator if bio(rx) is one
zbit01:
banz whit01,*- ; loop 8 times
ret

Figure 69: Serial reception routine

The code waits at wait07 for the start bit. It should be remembered that other interrupt
driven code such as data processing of AIC input will still be able to run. Once a start
bit is detected the code waits for half a bits’ width before checking for the next bit. This
is to ensure that detection is in the middle of the bit to allow for the maximum possible
baud rate discrepancy between the PC and the DSK. The code then uses the value
BIO to determine if the next bit is one or zero. It then either places and shifts a one or
a zero into the accumulator. This is repeated until the entire character has been
shifted into the lower 8 bits of the accumulator.

The alternative to disabling the INT2 interrupt is to install a new interrupt service
routine (ISR) for INT2. This can be done with the following code :

.ps 0804h ; Int 2 used for RS232
int2: B NEWCHAR ;

This code should be placed just before any existing ISR vector definitions. Don't forget
to make sure that INT2 mask in the Interrupt Mask Register (IMR) is enabled:

SPLK #022h,IMR ; Using XINT

Literature Number: BPRA0O63

The Programming Process

You now need to add code at the label NEWCHAR to actually receive the incoming
character. It is important to remember that the INT2 interrupt has a higher priority than
the AIC serial port interrupts. This may be an advantage or disadvantage depending
on your application. If it is important that the AIC communication is not disrupted
significantly then you should not use the INT2 interrupt. However, if to gain immediate
control of the DSK is more important, then using INT2 maybe advantageous.

Other Considerations

One of the important considerations when using serial communication is the choice of
baud rate. The program uses the RPT (Repeat) instruction followed by a NOP to
produce a delay. The 'C50 pipeline treats a repeat followed by the instruction to be
repeated as a single instruction regardless of how many times the instruction is
repeated. The consequence of this is that the RPT instruction pair can not be
interrupted by any interrupt until the repeats are finished. This delay may cause
problems in servicing interrupts in some programs. One solution is to always use the
highest baud rate possible to reduce all delays to a minimum level. The alternative is
to use the RTB (Repeat Block) instruction instead of RPT instruction. However this
instruction requires at least three instructions in the block to work properly.

2.12.3 The Programs

There are two programs in our tune generator, one which runs on the PC called
pc_tune.c and one which runs on the DSK called pc_tune.asm. We will not be
covering the details of pc_tune.c but the ‘C' source is included and is quite easy to
understand.

The program pc_tune.asm is based on the previous program octave6.asm. The major
difference is that instead of playing the 7 notes of the octave in a predefined order it
decides which note to play by information sent over the RS232 port. We will now look
at the changes and additions that have been made to octave6.asm to produce
pc_tune.asm.

The following figure shows the general flow of the assembly program. Sine generation
routine is the same as in ‘Octave 6.

TMS320C5x DSK Appiications Guide 93

The Programming Process

Consts & Vars

Intterupt Setting
Processor & Board
Initialisation

Read RS232

Calculate
Sine

Load values
for ..

Y Load values
for si

f-
-

Figure 70: Flow of PC_TUNE assembly program

The first change is that pc_tune.asm includes references to two external files called
com_init.asm and comm.asm. The contents of these files could have been placed
directly in pc_tune.asm but it is good design practice to keep commonly used routines
in separate files.

The first file is included in pc_tune.asm just after the AIC value definitions with the
following line.

.include "com_init.asm"

com_init.asm contains the constants which determine what speed of RS232
communication we will be using, in this case 19200 BPS.

After the end of the note definition table the line

TEMP .word 0

has been added. This is used to provide a temporary storage space for any characters
received from the RS232 port.

94 Literature Number: BPRA063

The Programming Process

The next change is related to interrupt masking. In octave6.asm we have the line
splk #022h,IMR ; Using XINT syn TX & RX

In pc_tune.asm this is changed to:
splk #020h, IMR ; Using XINT syn TX & RX

The reason for this is to disable the kernel software on the DSK which communicates
through INT2.

In the program octaveB.asm the program reaches the main program label WAIT and
constantly loops back to it whilst waiting for interrupts. In pc_tune.asm we use this
loop to wait for an incoming character from the RS232 port. This is achieved with the
following code:

- Wait for a new character
call RXBYTE

- and store it somewhere safe
sacl TEMP

The program branches off to the subroutine RXBYTE and waits for an incoming
character. The operation of RXBYTE is covered in the previous section. Once a
character has been received the subroutine returns control to the main program and
stores the character at the location TEMP. The subroutine RXBYTE resides in the file
comm.asm which is included at the end of pc_tune.asm with the line:

.include "comm.asm"

Once we have received a character from the RS232 port we need a method of acting
on the data received. In our case we want to load a different set of note coefficients
depending on the value sent. For example if we received the value ‘1", this would
mean that we would have to load the coefficients for the note ‘DO’ if we received the
value ‘2" we would have to load the values for the note ‘RE' and so on. This can be
achieved with a variety of methods but we use the following:

setdo lacl TEMP
sub #1,0
bend setre, NEQ
lar arl, #do
lar ar2, #docoet ; set DO
b WAIT

This shows the code segment for checking if we should play the ‘DO’ note. The value
of the character is loaded back into the accumulator. We should only play the note
‘DO’ when the received value is one. We test for this by subtracting one from the
accumulator. If the result is zero then we load in the ‘DO’ coefficients into ar1 and ar2
and branch back to WAIT. If the value doesn't equal zero then we try the next note by
branching to ‘setre’. The code for ‘setre’ is

setre lacl TEMP
sub #2,0
bcnd setmi, NEQ
lar arl, #re ; point to RE in note table
lar ar2,#recoef ; point to RE coefficient in note table
b WAIT

To select the other codes, the same code segment is used with different values.

TMS320C5x DSK Appiications Guide 95

The Programming Process

The only other changes to the code are related to the TX interrupt service routine. We
no longer need to use the DELAY function and therefore all references to it have been
removed. Likewise, we no longer need to play a sequence of notes and therefore note
selection code segments are removed. The remaining TX interrupt service routine is
simply a sine wave generator.

2.12.4 Keyboard controlled notes

96

The program does not need to make use of the DSK5D debugger or DSK5L loader.
To start the tune generator, type pc_tune at the DOS prompt. The program will
automatically try communication port 1 and check for a DSK board. If you are not
using communication port 1, you can select a different communication port using the C
flag. For example, to select communication port 2, at the DOS prompt type:

pe_tune -2 J

Once the program has found and reset the DSK it will try to download the program to
the DSK. The program should show each line of DSK code as it is being downloaded.
Once it has downloaded successfully, the PC will tell the program on the DSK to start
running. You can now control the note being played within octave 6 by pressing the
keys ‘1’ to ‘7’ on the PC’s keyboard.

One simple modification idea could be to alter the program to echo back any data sent
to it. Simply add the following line into the pc_tune.asm file :

- Wait for a new character
call RXBYTE

- and store it somewhere safe
sacl TEMP
call TXBYTE

Re-assemble the file pc_tune.asm and re-run the program pc_tune. This time you
should see the data being sent back from the DSK thus demonstrating that two way
communications can be implemented. This modification also demonstrates how
assembly code modules can be reused in many programs.

Literature Number: BPRA063

Application Software

3. Application Software

3.1 Introduction

This section examines typical DSP applications suited for the DSK. Some theoretical
background is given which is followed by program details. Any special programming
techniques employed are explained.

The application software examples build on the knowledge gained in the previous
sections. These software examples further enhance your understanding of DSP and
the DSK. They may also be useful in providing the templates for your own
applications.

3.2 FIR Filter

3.2.1 Overview

Filters are used in signal processing to pass a group of frequencies and attenuate the
rest. In this section we shall implement a digital low-pass filter. In the same directory
(\DSKTOOLS\FIR) there are some more software examples that implement high-pass,
bandpass and bandstop filters. You can experiment with these.

By connecting the AIC input to a sound source or a signal generator and the AIC
output to a speaker and an oscilloscope, it should be possible to hear and see how
the low pass filter algorithm removes higher frequencies. This particular digital filter
attenuates all frequencies above 1KHz. If you input a music signal, the degradation in
quality should be audible.

3.2.2 Files and Equipment

DIRECTORY FILES FUNCTION
\DSK\FIR lopass.asm source code file
\DSK\FIR lopass.dsk DSK output file

TMS320C5x DSK Appiications Guide 97

Application Software

it

high impedance 400Q microphone
other sound source with RCA jack

B

EGA or VGA monitor

DSK INPUT

9 pin RS232 cable

=

=

e

=

5 2.1mm jack

o external power supply 3 Mbytes HDD

» 9V ac supply .

o 25timA. S0/60H7 100°6 TBM compatible
- ° DOS 4.01

DSKSL.ENE

. audio amplifier
{{{i multimedia speakers
RCA to phono connector

Figure 71: FIR Filter Equipment

3.2.3 Operation

Initiation
\DSK\FIR\ dsk5llopass ¢1.J (com 1)
c2.) (com?2)

The effects of filtering on a signal can be observed on an oscilloscope. As the signal
frequency moves above the filter cut-off frequency of 1kHz, the signal amplitude at the
output of the filter should drop.

3.2.4 Background

Real signals combine a number of different frequencies. Filters allow certain
frequencies to pass unaffected, while removing other frequencies. The spectrum of
frequencies that are removed depends solely on the type of filter implemented. Filters
are extremely important in signal processing where information at specific frequencies
must be extracted or suppressed. For example, in audio applications the noise
generated by 50Hz mains supply (mains hum) needs to be removed. This can be
filtered out.

98 Literature Number: BPRA063

Application Software

Primarily, there are four types of filter:

Low pass allows only lower frequencies to pass

High pass allows only higher frequencies to pass

Band pass allows only a band of frequencies to pass,
filtering out lower and higher frequencies
outside the band.

Band stop stops a band of frequencies, allowing the

lower and the higher frequencies to pass
outside the band.

The following figure shows an analogue high pass filter. It is easier to observe the
effect on the signal in the frequency domain. The frequency at which the signal falls to
half of its original amplitude is called ‘the cut-off' frequency. This is also known as -
3dB point (20log,,(1/2).

/ THE FILTER \

TIME DOMAIN
AMPLITUDE D—I
A
c
V',‘T R T Vout
> TIME
. o—
v
f,&f, FILTERED OUT
f,.fo&fs SURVIVED
FREQUENCY DOMAIN
AMPLITUDE AMPLITUDE
A A
AR

>
\ fif, f3 f, fs FREQUENCY fif, fif, fs FREQUEr\y

Figure 72: A high pass filter and its effect on a signal

Filters frequently affect another important property of the signal; it's phase. The
following figure shows a sinusoid with a phase shift of 90 degrees. Phase is an
important property of the signal. Most signal processing applications need to take into
account phase response of various parts of the system. For filters it is desirable to
have a linear phase response. A linear phase response means that all frequencies

nAan intrad

Iﬂl yc lllllUUUbCU Uy Ulb’ IIIIUI

ha tha aama amniint ~f nhnnn ~
nave lllc Same amount Oi pHasc ui

TMS320C5x DSK Appiications Guide

©
©

Application Software

4 N

AMPLITUDE
A

> TIME
Y
|A|
A

‘ . > TIME

v 900 PHASE SHIFT

N /

Figure 73: A sinusoid shifted by 90 degrees in phase

Filters can also be implemented digitally. Digital filters has distinct advantages over
their analogue counterparts:

Predictability & Repeatability

In the digital domain there is no variance due to components and temperature as
binary numbers are used to represent data. Every sample is always treated in the
same way. There is no variance even if the signal is processed with different digital
processors. Therefore, time and time again we can perform the same operation and
achieve exactly the same characteristics.

Re-programmability

We can drastically alter gain and phase characteristics of a digital filter without
needing to add or change any hardware. Digital filter characteristics may also be
changed ‘on-the-fly’ in response to an input signal, allowing designers to build
‘adaptive’ systems.

Digital filters have traditionally been one of the most important of DSP applications.
There are two types of digital filters:

e Finite Impulse Response (FIR),

e Infinite Impulse Response (lIR).

FIR filters respond to an impulse (a short signal) with a finite number of pulses. lIR
filters respond to an impulse with an infinite number of pulses, hence the names. In
practice, FIR filters are used where a linear phase response is desirable. lIR filters are
used where the application requires a sharp cut-off with less processing. The subject

of digital filtering is covered in a number of DSP text books '. The first reference has a
very simple illustration of how FIR filters work.

FIR filters are simpler to understand. The diagram below shows a simple three tap FIR

filter, which involves three multiplications and two additions. Z' denotes a delay
equivalent to a sample period. This is called a unit delay. In practice, the filter lengths

'A simple approach to DSP, C. Marven, G. Ewers, Texas Instruments, 1994
Digital Signal Processing, A practical approach, E. C. Ifeachor, B. W. Jervis, Addison-Wesley 1993

100 Literature Number: BPRA0O63

Application Software

are considerably longer than this, but the example will serve to illustrate the
functionality of the filter.

/ y(n) =hg x(n) +hyx(n-1) +hyx(n-2) \

new sample previous sample the sample before

x(n-2)
—» Tap

.:Q ——» Weight

Summing junction

/'
__.———>@———>@——> y(n) Output

x(n) sampled analogue waveform

h,, = weights (coefficients, scaling factor)
\ Z1 unit time delay = one sampling period

Figure 74: FIR Filter

o A new sample enters the filter from the left as x(n) which is multiplied by coefficient
h,.

e The previous sample, x(n-1), is multiplied by h, and the sample before that, x(n-2).
is multiplied by h,.

e All products are then added, yielding the final result which is:

y(n) = hx(n)+h.x(n-1)+h,x(n-2).

e When the new sample arrives, all the previous samples are delayed and hence
x(n) = x(n-1)

e When this routine is performed sufficient number of times with a digitized signal,
unwanted frequencies are removed.

e The filter coefficients (weights) and the number of taps determine the
characteristics of the filter.

FIR filters are popular as they can be implemented with ease and offer linear phase

response. Linear phase response is essential in applications such as audio and data

transmission.

Calculating the filter coefficients is a computationally intensive and repetitive task. This

type of calculation is usually done using a software package. Filter design software

takes the required response, roll-off rate, required number of taps and produces the

filter weights and often simulates the response.

TMS320C5x DSK Appiications Guide 101

Application Software

3.2.5 AFIR filter Inplementation on DSK

The FIR filter we are going to implement is designed using a software filter design
package. It is a relatively long filter with 80 taps. It has a cut-off frequency of 1kHz.
The filter design package gives us the 80 coefficients. Let us now examine each
section of the program that implements this filter.

P —
1 Settings
coefficents
2 Interrupt Settings
Branch on AlC int
3 Processor Initialisation
Registers
4 Board Initialisation
AIC to 10kHz
ISR
output value
5 Main Program
Wait for interrupt *
ISR
calculations
6
ISR
read new value

Figure 75: FIR Flow Chart

The FIR implementation is structurally similar to PASS.ASM. The coefficients are
stored at the top of the source code.

.mmregs ; memory mapped registers

.ds 0F00h ; data memory from address 0F00h
TA .word 16 transmit A register value
RA .word 16 receive A register value

TB .word 31 ; transmit B register value
RB .word 31 ; receive B register value

AIC_CTR .word 08h ; AIC control register value
OUTPUT .word 0 temporary output storage

TEMP .word 0 location of TEMPorary storage
TEMP1 .word 0 H

seed .word 07e6dh ; seed for random noise generator

ho .word 0 ; 40 0.0000
hl .word -157 ;39 -0.0048
h2 .word -261 ; 38 -0.0080

102 Literature Number: BPRA063

Application Software

h3 .word -268 37 -0.0082

h4 .word -170 36 -0.0052

hS .word 0 35 -0.0000

hé .word 180 34 0.0055

h75 .word -170 ; 36 -0.0052

h76 .word -268 ;37 0.0082

h77 .word 261 ; 38 -0.0080

h78 .word 157 ;39 -0.0048

h79 .word 0 ;40 0.0000

XN .word 0,0,0,0,0,0,0,0,0,0 ; 80 data locations
XN1 .word 0,0,0,0,0,0,0,0,0,0 ; stage delay line
XN2 .word 0,0,0,0,0,0,0,0,0,0 ;

XN3 .word 0,0,0,0,0,0,0,0,0,0

XN4 .word 0,0,0,0,0,0,0,0,0,0

XN5 .word 0,0,0,0,0,0,0,0,0,0

XN6 .word 0,0,0,0,0,0,0,0,0,0

XN7 .word 0,0,0,0,0,0,0,0,0

XNLAST word 0;

Figure 76: FIR Coefficients

The sampling rate is set at 10kHz by providing suitable values for TA, RA, TB and
RB.

MCLK

TAx2xTB

SAMPLING FREQUENCY

By setting AIC_CTR to 8h, the transmit and receive sections of AIC are set to
synchronous, the gain of the preamplifier is set to 1 and the bandpass filter is taken
out.

A temporary storage memory location is reserved, initialized and assigned the
name OUTPUT. This location is used for storing the output sample from the filter.
Storage areas TEMP, TEMP1 and a constant ‘seed’ are used by the random noise
generator.

The filter design package generates filter coefficients. These values are assembled
into data memory, each with a label for user reference: i.e. h0 to h79. The
coefficients are stored in Q15 format with their decimal value commented on the
right of the semicolon. Notice that the coefficients are symmetrical around the
middle.

The history of input samples will be stored in memory. (x(n), x(n-1), x(n-2).......) The
80 locations are reserved and initialized. The last sample space is given the name
XNLAST and the first sample space XN.

In the program following, sections until the interrupt service routines are similar to both
PASS.ASM and SINE.ASM.

The filtering takes place in receive ISR. The interrupt service routine is executed every
time a new analogue sample has been digitised by the AIC. After setting a sampling
rate of 10,000Hz we can expect that the routine is serviced 10,000 times per second.
The 80 coefficient filter equation is:

vy = hyx(n) + hx(r =10+ hy (x = 2) Dy (1= 79) + oy (1 = 79)

TMS320C5x DSK Appiications Guide

103

Application Software

Receive ISR implements this equation.

A
Main Program
Wait for interrupt set data page
read new sample
store new sample
multiply samples
with coefs, add
with data move
output new value
Figure 77: FIR ISR Flow Chart
3.3 FIRISR
RX 1ldp #0 ; load data page zero
clrc INTM ; enable interrupts for DSK debugging
lamm DRR ; read serial input
and #0FFFCh ; remove control bits
1dp #XN ; load XN data page
sacl XN ; store received word to OUTPUT
lar ARO, #XNLAST ; AR0 = last delay element add
zap ; zero acc and product register
mar *, ARO ; ARO is the current AR register.
rpt #79 ; repeat next line 80 times
macd #h0,*- ; the complete coeff table.
Apac ; accumulate last product
sach OQUTPUT,1 . remove extra sign bit
lacc OUTPUT ; load accumulator with output
sfl ; shift accumulator left
and #0FFFCh ; two LSBs must be zero for AIC
samm DXR . write acc to transmit register
clrc intm ; enable interrupts
ret ; return to main program

Figure 78: FIR ISR

104 Literature Number: BPRA063

Application Software

‘LDP #0' sets the data page to zero to read the serial input port memory mapped
register DRR.

The most recent sample is read from DRR straight into the accumulator as a digital
representation of the analogue waveform. This is our sample x(n).

‘OFFFCh' is ‘and’ed with the lower half of the accumulator to ensure that the two
least significant bits are zeroed. This is necessary because the AlC has only 14 bits
resolution.

LDP changes the data page to the area of data memory that contains the history of
samples.

SACL stores the word to the location XN. This is the first sample location.

The auxiliary register ARO is loaded with the address of the data memory location
which holds XNLAST. This will be used for indirect addressing during the multiply
and accumulate phase.

The accumulator and product register are cleared, removing x(n) from the
accumulator and the product generated from the previous operation. Performing
this clearing is essential otherwise filter calculations will be wrong.

Aucxiliary register ARO is then made active using the MAR command. This
instruction changes ARP bits in STO0.

RPT loads the repeat counter register with 79, indicating that the processor should
repeat the following line a total of 80 times.

MACD #h0,"- is the core of the filter.

ho XN

h79

XNLAST |« ARo

Figure 79: The Multiplication Process

TMS320C5x DSK Applications Guide 105

Application Software

The MACD instruction:

add the contents of the product register to the accumulator | initially zero
multiply the value pointed to by ARO by hx initially ARO=XNLAST hx=h0
copy location pointed to by ARO to next location initially
XNLAST into XNLAST+1
finally
XN into XN+1
decrement the address in ARO by one as *-
increment the h0 address by 1 as we are in a repeat loop

All the samples are multiplied by their appropriate constant and added to the
accumulator each time the instruction executes. The instruction also moves the
samples by one memory location. This way the filter is ready for the next sample when
it arrives which is the reason that ARO points to the last sample rather than the first
one. Such a manipulation would not be possible if the filter coefficients were not
symmetric. If you are puzzled by the way the MACD instruction works, there is a
program ‘TESTMACD' in FIR directory which demonstrates the operation of the
instruction on a simpler filter.

This instruction demonstrates the power of DSP filtering applications. An FIR filter is
implemented effectively using a few instructions.

e The result of the successive multiply and accumulates is held within the
accumulator, in Q30 format. The higher accumulator represents the integer part of
the number which is stored with a left shift to a temporary location OUTPUT. Left
shift eliminates the sign bit. The lower 16-bits are discarded. This has an effect on
the accuracy of filtering but it is not significant.

e OUTPUT is reloaded to the lower accumulator.

e ‘SFL’ Left shifts accumulator by one bit normalizing the number out of Q15 format.
Remember this operation is equivalent to dividing the number by 2°.

¢ The two least significant bits are zeroed because the AIC is only 14 bits.

e The word is output to DXR register in the same way as in PASS.ASM. The filtered
sample is then transmitted to the AIC.

Adding the random noise generator

The FIR filter as implemented will filter any signal that is fed into the input of AIC.
LOPASS program also contains a random noise generator which is commented out.
Comment these lines in by removing (;). There is one instruction just after the
random noise generator; ‘LAMM DRR'. This also needs to be commented out.
Reassemble the program and run it. You will hear low pass filtered random noise.
There are interesting experimental possibilities here. You could now comment out the
filter and listen to the random noise only.

You can also change the characteristics of the random noise generator by using a
different ‘seed'.

106 Literature Number: BPRA063

Application Software

In FIR directory, there are filter programs for a high-pass, a bandpass and a bandstop
filter. These filters have 85 coefficients and all coefficients are contained in a separate
file appropriately named as follows:

filter coefficients file
high-pass hipass.flt
bandpass bandpass.fit
bandstop bandstop flt

These files are then included in the source file with an assembler directive:
.include “hipass.flt”

This directive causes the filter coefficients file to be included in the original source file
before the actual assembly. This is good programming practice and keeps files tidy,
modularised and separate. Examine the source files carefully. Is there any difference
in the different filter source files?

3.4 Amplitude Modulator
3.4.1 Overview
This software modulates a signal from the serial port input onto a carrier wave. The

output is sent directly to the serial output port which can be either heard or visualised.

3.4.2 Files and Equipment

DIRECTORY FILES FUNCTION
\DSK\AM_MOD\ am_mod.asm source code file
\DSK\AM_MOD\ am_mod.dsk DSK output file
\DSK\AM MOD\ am_mod.ico Windows icon

TMS320C5x DSK Appiications Guide 107

Application Software

1

DSK OUTPUT

® Kt

) sound source

2. 1mm jack

external power supply
o YV ac supply

S 250mA 50 60HZ

7

multimedia speakers

5o
({i‘ CRO
: speetrum analyser

-

EGA or VGA monitor

9 pin RS232 cable

com| or com2

3 Mbytes HDD

10074 [IBM compatible
PC DOS 4.01

DSKSI.EXNE

Figure 80: Amplitude Modulator Equipment

Initiation

\DSK \AM_MOD

3.4.3 Operation

You can also run the program from the debugger. Apply an input to DSK and

dsk5l am_mod

cl 4
c2

(com 1)
(com 2)

modulated signal can be observed at the output using an oscilloscope.

3.4.4 Background

Amplitude modulation techniques are used widely within radio applications where
either voice or music is superimposed onto a carrier wave. Before the advent of

frequency modulation, amplitude modulation was the standard technology.

In amplitude modulation the frequency of the carrier is kept constant. The amplitude
however is varied in proportion to an input signal, thereby superimposing information
onto the carrier wave. During demodulation, the carrier wave is removed, leaving the

input signal.

Placing information on a carrier wave gives many advantages. The most significant is
that we can have many different frequency carriers transmitting using audible
frequencies with reduced interference. Hence we can have many radio stations

broadcasting quality voice and music.

Literature Number: BPRA063

Application Software

3.4.5 Theory

Amplitude modulation theory is very simple. The magnitude of the carrier sine wave

should change proportionally with the information signal. The carrier usually is of
higher frequency.

signal

multiply @——» R

modulated signal

carrier

Figure 81: Operation of an AM

Modulating the carrier wave involves a multiplication as shown above. The result is a
carrier with two side lobes; an upper and lower.

, carrier

|

|

Jower upper
L Lh

Figure 82: Frequency Spectrum

Itis possible to see the modulation process using a spectrum analyser or a CRO and
also to hear the carrier frequency and two side lobes.

F=Fe =By
Fy = Fe+ By

TMS320C5x DSK Appiications Guide 109

Application Software

3.4.6 Implementation

The implementation combines several concepts that we have already explored; sine
wave generation, filtering and multiplication. The software serves to demonstrate that
using a few simple building blocks we can start to build useful applications.

The carrier wave is generated using a digital oscillator which was discussed in the
previous chapter. The frequency of the carrier is kept low to 2kHz. The input signal
(modulating signal) is filtered using an FIR filter. This filter is similar to the FIR filter we
implemented previously. However, for this application, coefficients are designed to
give a bandpass filter between 200Hz and 1800Hz. The two signals are multiplied for
every sample producing the modulated output. The modulated output signal can be
observed on the output jack of DSK.

The following figure shows the general flow of the program. Let us now examine the
program in more detail.

1 Settings
coefficients
2 Interrupt Settings
Branch on AIC int
L T Processor Initialization
Registers
Board Initialization
4 Fem=-
AICto 10kHz | gmmszzmm=ocmmoce-o 1ISR
multiply input with | 1
filtered carrier
5 Main Program
Wait for interrupt
6

Figure 83: Amplitude Modulator Flow Chart

Settings consists of the data required to initialize the AIC, constants to generate a sine
wave carrier and coefficients for a FIR bandpass filter. The filter ensures that the
modulating signals are within the required range (200Hz - 1800Hz).

.mmregs ; enable memory mapped registers
.ds 0£00h ; assemble to data memory

TA .word 16 ; Transmit A register

RA .word 16 ; Receive A register

110 Literature Number: BPRA063

Application Software

TB .word 31 ; Transmit B register

RB .word 31 ; Receive B register

AIC_CTR .word 08h ; AIC control register

coeff .word 5219 ; coeff value

sinx .word 15531 ;o Yi(n)

Yminusl .word 02bfh ;5 Y(n-1) value for carrier generation
;Filter Coefficient Generator bandpass @ flcut=200hz fhcut= 1800Hz
ho .word 0 ;40 0.0000

hl .word 1 ;39 0.0001

h2 .word 0 ;38 0.0000

h3 .word 1 ;37 0.0001

h77 .word 0 ;38 0.0000

h78 .word 1 ;39 0.0001

h79 .word 0 ;40 0.0000

XN .word 0,0,0, ,0,0,0,0,0 ; 8C data locations for 80
XN1 .word 0,0,0, ,0,0,0,0,0 ; stage delay line

XN2 .word 0,0,0, ,0,0,0,0,0 ;

XN3 .word 0,0,0, ,0,0,0,0,0 H

XN4 .word 0,0,0, ,0,0,0,0,0 ;

XN5 .word 0,0,0, ,0,0,0,0,0 ;

XN6 .word 0,0,0, ,0,0,0,0,0 H

XN7 .word 0,0,0, ,0,0,0,0 ;

XNLAST .word 0 H

OUTPUT .word 0

Figure 84: AM Filter coefficients

® A 10kHz sampling rate is set.

e Set serial port for synchronous operation.

e A 2kHz carrier is set using sinx, Yminus1 and coef f. All these values are in Q15
format.

e 80 tap FIR bandpass filter is set using Blackman windowing to generate 80
coefficients represented in Q15 format.

e 80 locations are reserved for the input samples.

The processor is initialized in the same way as in the previous programs. The main
program is a ‘WAIT" loop for interrupts.

All the necessary functions are implemented in the receive interrupt service routine.
The ISR is executed on receiving an interrupt from the AIC. This is the input sample
coming in. The routine performs the amplitude modulation in three stages. Firstly, a
new sine wave output is calculated and stored in data memory. This represents the
carrier. Secondly, an input is read from the serial input port and filtered by an 80 tap
FIR bandpass filter with a pass band 200Hz to 1800Hz. Filtering removes unwanted
frequencies which may be contained in the input signal. Both the filtering and sine
wave generation routines are identical to FIR.ASM and SINE.ASM program's interrupt
service routines respectively. Now let us look at the actual modulation function.

ThiS320C5x DSK Appiications Guide 111

Application Software

RECEIVE
; generate carrier ; as with SINE.ASM
; filter input ; as with FIR.ASM
R AM modulate bandpass on carrier
ZAP ; clear accumulator and product register
MAC sinx, OUTPUT ; Multiply the carrier with the filtered
input
APAC ; Product -> ACC
SACH OUTPUT, 1 ; Save and discard extra sign bit.
LACC OUTPUT, 1 ; out of Q15 format
AND #0FFFCh ; Two LSBs must be zero for AIC
SAMM DXR ; Send to transmit register
RETE ; return to main program

Figure 85: Amplitude Modulator ISR

Firstly, clearing the accumulator and the product register prepares the CPU for the
MAC operation.

‘MAC SINX,OUTPUT’ multiplies the magnitude of the carrier wave with the
filtered result. Thus performing the modulation part of the program.

Since accumulator was zeroed ‘APAC’ loads the modulated sample into the
accumulator.

‘SACH OUTPUT, 1’ stores the high accumulator into memory location with one left
shift. Left shift discards the sign bit from the multiplication. Storing only high
accumulator discards low accumulator. These are the least significant bits of the
product.

‘LACC OUTPUT, 1 instruction normalizes the number out of Q15 format.

e ‘AND #OFFFCh’ clears the lowest two bits for AIC and the following instruction

writes the sample to the transmit register.

There is some scope for experimentation with AM_MOD program. You could increase
the carrier frequency to 3kHz. For this, the new coefficients need to be calculated. The
formula for the coefficient is in previous chapter.

You also need some initial values for the sine wave. Use the same value for sin x and
calculate a value for ‘Yminus1' using the same formula. You should now have a
program that modulates the incoming signal with a 3kHz carrier.

Another modification could be increasing the amplitude of the carrier. There is an
instruction, the receive interrupt service routine, which reduces the carrier amplitude
just after its generation. This needs to be changed.

You can observe the effects of these changes on an oscilloscope.

112

Literature Number: BPRA063

Application Software

3.5 Reverberate

3.5.1 Overview

The reverberation software reads the serial input port and simulates echo by adding
the delayed input signal to the new input signal. The echoed signal is output via the
AIC to an amplified speaker.

3.5.2 Files and Equipment

DIRECTORY FILES FUNCTION
\DSK\REVERB reverb.asm source code file
\DSK\REVERB reverb.dsk DSK output file
3 C———
?’ sound source
; EGA or VGA monitor
o ‘ 9 pin RS232 cable
. ___' . DSK : : -
!T H H : T coml or com?2
E o~ C\I?ju :’? ‘f:::::.: ;:?:: sy
5 ; 2.0mm jack
% E :;‘\%c‘rl?.ll ‘v".)ff er supply 3 Mbytes HDD
ST e s, PO e IKM comparibls
\ l)SKiI.,.! XE
«{{ii multimedia speakers
Figure 86: Reverberation Equipment
3.5.3 Operation
Initiation
\DSK\REVERB\ dsk5l reverb c1.J (com1)

c2 . (com?2)

The best way to observe the effect of the reverberation program is to apply an audio
signal to DSK input and connect the DSK output to an amplified speaker.

With some microphone types, it may be difficult to experience the effect of reverb
program. This is because the audio signal provided by the microphone is too small
despite being amplified four times by the AIC. One solution is to use a microphone
with higher output. Another solution is to build a pre-amplifier as suggested in
Designer Note Pages Number 50 (DNP 50).

TMS320C5x DSK Appiications Guide 113

Appilication Software

3.5.4 Background

Echo occurs when sound signal is reflected back to the listener. Echo in a small room
can develop into reverberation which is a combination of a number of echoes. In a
small room, as the signal bounces off the walls and other objects, echo gradually
attenuates until it completely disappears.

It is possible to use the DSK for creation of reverberation effects. DSK stores sound
samples of incoming signal and plays them back together with the new incoming
signal at a slightly later time.

3.5.5 Theory

114

An echo can be heard if a person stands in a closed room and shouts out a short word
and then listens. This is shown in the following Figure 87. Sound waves propagate
from the speaker and bounce off the far wall (time 1) returning to the speaker a short
time later. This gives the most intensive echo. The reflected signals continue and after
several reflections they become too weak to be heard. In the example, three echoes
are heard, equally spaced in time, each one significantly weaker than the last.

time 1

time 2

time 3

time 4

Figure 87: An Echo

Now, instead of shouting out a short word, consider the situation when the subject
speaks out a five word sentence. What will the subject hear towards the end of the
sentence?

Literature Number: BPRA063

Application Software

word 5
}m) Continuous: § word sentence
+
—
word 4
+ L

word 3
+
word 2
+
word |

Figure 88: Continuous Echo

When speaking out the fourth word, the subject will hear a combination of word 4
together with echoes of previous words. The latest echo, echo of word 3 in this case,
will be the strongest. (i.e. having the biggest amplitude). The weakest echo will
originate from word 1.

3.5.6 Implementation

The reverberation effects described above can be created using the DSK. Echoes can
be simulated by storing the sound samples for a defined time and then adding an
attenuated version of these stored samples onto the incoming signal. A good
reverberator needs to keep a history of samples. The older the sample, the more
attenuated it should get. In DSP implementation, attenuation is achieved by
multiplying the sample by a factor which is smaller than one.

The following figure shows a representative example of how a reverberator can be
implemented on a DSP. In fact the diagram is strikingly similar to the diagram of an
FIR filter.

TMS320C5x DSK Appiications Guide 115

Application Software

116

conveyorof samples—

" - A

a, as I a, ‘ a, ‘

Figure 89: Echo Generator Implementation

DSP processors are ideal platforms for creating a variety of sound effects. Facilities
for multiplication, addition and delay are very efficient. Additionally, most DSPs have
circular buffers which make the implementation of delay easy and efficient.

The TMS320C50 has two circular buffers which work independently. A start and stop
address defines the lengih of the buffer, while an auxiliary register points to a location
in each buffer. When the pointer reaches the end of the buffer it automatically loops
back to the start. This makes the implementation of delay easier. Furthermore, other

auxiliary registers operating on the same buffer can be used to implement the taps.

Let us now implement a reverberator using a circular buffer. The following figure
shows the overall flow of the program.

Literature Number: BPRA063

Application Software

Settings
Coeffiecents

Processor Initialisation

Registers

ISR Prime 1
Processor Initialisation 1
& Set circular buffers

ISR Prime 2
Processor Initialisation 2,
Set pointers

ISR
Check pointers

Main Program
Wait for interrupt

ISR
Output

ISR

L Read new sample Tap and add echo

Figure 90: Reverberate Flow Chart

Let us now examine the reverberate program in detail. The settings section is similar
to previous programs.

TA .set 18 ; Transmit A register value
RA .set 18 ; Recelve A register value
TB .set 36 ; Transmit B register value
RB .set 36 ; Receive B register value
AIC_CTR .set 29h ; AIC control register value
TAP .set 500h ; Gap between echo

Figure 91: Reverberate Settings

¢ A sampling rate of 10kHz is set by loading TA, TB, RA and RB registers with the
relevant values. The AIC_CTR sets synchronous operation for serial port, enables
the band pass filter on the signal input and sets the input gain to 4.

* TAP represents the time gap between the echoes. The TAP sets number of
memory locations which is proportional to the time between echoes.

TMS320C5x DSK Appiications Guige 117

Application Software

Processor initialization is similar to previous programs except for the ‘circular buffers’
section. Let us now examine this in detail.

118

KA KKK KKk k ok kh kA KKK Kk hk kA KKK KK Ak kA KKK K IR KK KA KA Rk Kk kkkh Ak Ak Ak KK K K K K % %

* TMS32C05X INITIALIZATION *
KA KKK A KKK A Kk kK k ok kkk ok k h kA Ak kA A AR KKK KKK KA K KA A KA AR K A KA A A
.ps 0al0h
.entry
START:
SETC INTM ; Disable interrupts
LDP #0 ; Set data page pointer
OPL #0834h, PMST
LACC #0
SAMM CWSR ; Set software wait state to 0
SAMM PDWSR ;

; initialize circular buffers
LACC #0C00h
SACL CBSR1

; set up circular buffer pointers
; bufferl = 0c00 -> 2bff

SACL CBSR2 ; buffer 2 = 0c00 -> 2bff
LACC #02bffh ;

SACL CBER1 ; buffer top 2bff

SACL CBER2 H

LACC #98h
SACL CBCR

; bufl=AR0, buf2=AR1

;initialize AIC

SPLK #022h, IMR ; Using XINT syn TX & RX

CALL AICINIT ; initialize AIC and enable interrupts
; initialize circular buffer pointers

LAR ARO, #2BFFh ; ARO --> top of CBI1

LAR AR1,#1980h ; AR1 -->1980h initial echo spacing

LAMM AR1

SUB #TAP, 0

SAMM AR2 ;AR2--> 1980-TAP

SUB #TAP, 0

SAMM AR3 ;AR3 - ->1980-2xTAP

SUB #TAP, 0

SAMM AR4 ;AR4 - ->1980-3xTAP
;final processor initialization

CLRC OVM ; OVM = 0

SPM 0 ; PM = 0

SPLK #012h, IMR

CLRC INTM ; enable

Figure 92: Reverberator Initialization

Processor initialization is similar to previous programs.

TACC H#O ' i i initiali
LACC #0COOh' starts a sub-section which initializes the circ

circular buffers are created. Both reside in 0c00h to 2bffh. Effectively there is one
circular buffer with two auto-pointers. Circular buffer one uses ARO as a pointer;
circular buffer two uses ART.

The value ‘0c00h' is stored to both circular buffer start registers.

The following few instructions store the value ‘2bffh’ to both circular buffer end
registers.

The accumulator is then loaded with the number ‘098h’ which is loaded into the
circular buffer control register. This register governs how the circular buffers

Literature Number: BPRA063

Application Software

function. 098h assigns ARO to circular buffer one and AR1 to circular buffer two and
enables both buffers.

¢ The following two instructions initialize the AIC.

* Then a series of instructions set ARO to AR4 to different positions in the circular
buffer.

¢ The auxiliary registers are loaded with following values:

Register Value
ARO 2bffh
AR1 1980h
AR2 1980h-500h
AR3 1980h-1000h
AR4 1980h-1500h

Let us now examine more closely the settings of auxiliary registers:

TIME 0 TIME 10 \

ARD ——8> NEW SAMPLE
AR4 — ECHO3 1980h-1500h
AR3 — [~ "ECHO2 1980h-1000h
ARZ —P~ ECHO 1 1980h-500h AR4 —- ECHO3
AR1T —P SAMPLE 1980h AR3 —» ECHO2
AR2 — ECHO 1
AR1 — SAMPLE

Q — NEW SAMPLE 2bffh /

Figure 93: Circular Buffering

® The auxiliary register settings facilitate spacing the echoes. When a new sample
arrives, it is written to a location in the circular buffer pointed to by ARO.

¢ ARQ then points to the next location for the next sample. But, because the buffer is
circular, it will start from the beginning of the buffer (0c00h) if it has reached the top.
Eventually, the oldest sample will be overwritten after ARO has traversed the whole
length of the buffer.

e AR1 points to the sample for which the echo will be generated. This sample is
separated from the new sample by (2bffh-1980h) memory locations. AR2, AR3,
AR4 point to previous samples which will be used to generate the other echoes.
They are equally spaced by 500h (TAP) locations.

TiMS320C5x DSK Appiications Guide 119

Application Software

e Echo generation code needs to add a weighted portion of these samples to the
sample pointed to by ART.

e |t is important to notice that the samples do NOT move. It is the pointers that
traverse the circular buffer. New samples are written into the circular buffer as they
arrive.

* Also note that ARO and AR1 are maintained automatically by 'C50. This means that
when ARO and AR1 reach 2C00h, they are automatically reset to 0cOOh. However
for AR2, AR3 & AR4 this has performed manually.

All echo generation and buffer pointer maintenance takes place in the interrupt service
routine. Let us now examine this in detail.

RECEIVER INTERRUPT SERVICE ROUTINE

core reverb routine

stores received sample

; adds three echoes to delayed sample
sample delay 2bffh-1980h

; echo delay 500h

LACL DRR ; read data from DRR
SACL *+,0,ARL ; store new sample

; and point to sample to be echoed
LACC *+,16,AR2 ; get&move sample to high acc

; start adding echoes
ADD *+,15,AR3 ; add (first echo/2) to sample
ADD *+,14,AR4 ; add (second echo/4) to sample
ADD *+,13,AR0 ; add (third echo/8) to sample
AND #0FFFCh, 16 ; zero low two bits in high acc
SACH DXR ;o Xmit

;pointer maintenance ARO & ARl maintained auto
; maintain AR2, AR3, AR4 manually

LAMM AR2 ;has AR2 reached top of buffer
SUB #2C00h, 0
BCND CHK_3,NEQ
LAR AR2,#0C00h ;set to bottom if it has
B GO
CHK_3: LAMM AR3 ; Is AR3 at top?
SUB #2C00h, 0
BCND CHK_4,NEQ
LAR AR3,#0C00h ; set to bottom if it has
B GO
CHK_4: LAMM AR4 ;is AR4 at top?
SUB #2C00h, 0
BCND GO, NEQ
LAR AR4,#0C00h
GO: RETE ; go back program

Figure 94: Receive Source Code

* Note that the ARP initially points to ARO.

e ‘LACL DRR’ loads the fresh sample into accumulator.

e ‘SACL *+, 0, AR1 stores the sample in the location ARO is pointing to with no shift,
increments ARO and makes AR1 current (ARP=1). This completes the sample
storage.

120 Literature Number: BPRA063

Application Software

‘LACC *+, 16, AR2’ picks the sample to be processed. Notice that this is not the
fresh sample but a previous sample away from the fresh sample by (2bffh-1980h)
locations. This sample is moved to the high accumulator making the accumulator
ready for echo addition. AR1 is incremented and AR2 is made current.

‘ADD "+, 15, AR3' picks up a sample from the location AR2 is pointing to and shifts
this sample by 15 bits. This is equivalent to halving the sample value. This value is
then added to the value in the high accumulator.

The following ADD instructions add smaller values of earlier samples to the sample
value. The sample now has three echo values added to it with different weighting
factors.

The following two instructions ‘AND and SACH' transmit the sample to AIC.

The ARO and AR1 are maintained automatically using the circular buffers. AR2,
AR3 and AR4 must be checked manually to ensure that they do not go out of the
range of circular buffer, and when they reach the top they loop back to the
beginning. This is performed using a series of conditional branches.

AR2 is checked first, loading the contents to the accumulator. Subtracting 2C00h
represents the length of the buffer. If the value is less than or equal to zero, AR2
has not reached the end of the buffer and therefore the program continues to check
AR3 and AR4.

If the test finds that AR2 is at the top of the buffer, the start address is loaded into
the register.

Same tests are carried out for AR3 and AR4.

New that you have gained sufficient experience with ‘REVERB' program, a few
interesting experiments could be performed. Firstly create a new file to experiment
with and copy ‘REVERB' into it. TAP constant could be changed to experiment with
different size rooms. As TAP gets smaller, so does the size of the room. Another
interesting experiment would be to change the echo weights. This is more complex but
it will give you more programming experience. You need to change the shift factors in
the core reverb instructions. Another more interesting and more complex change
would be to use four echoes rather than three and add the echoes to the fresh sample
as it arrives. This would eliminate the delay introduced to the fresh sample.

TMS320C5x DSK Appiications Guide 121

More Software Examples

4. More Software Examples

4.1 Introduction

The application disk provided with this guide contains 6 more demonstration
programs. Full source code listing files are included for self-study.

These programs demonstrate some of the more advanced capabilities of the DSK,

while offering enjoyment. You shou

Id find on the application disk:

DIRECTORY MAIN DSK FILENAME FUNCTION

\DSK\MINUET\ minuet.dsk

outputs a tune

\DSK\RECORDER\ sampler.exe

short music recording program

\DSK\FUNCTION\ func.exe

noise and sine wave generator

\DSK\DTMF\ dialer.exe a tone dialling PC interface
\DSK\SPEC\ spec50.exe 0-5kHz 256 radix 2 spectrum analyser
\DSK\OSCOPE\ 0scope.exe a virtual on-screen oscilloscope

After operating the programs, you

can make modifications to them. Never modify the

originals, in case you may need them again. Make a copy under a different name and

then make your modifications.

4.2 Minuet Player

4.2.1 Overview

The DSK is used to play a minuet consisting of base and tune notes. The music
repeats itself until the user stops the program.

4.2.2 Files
DIRECTORY FILES FUNCTION
\DSK\MINUET\ minuet.dsk dsk file
minuet.asm dsk assembler source
minuet.txt tune tables
sinsub.asm sine wave generator

122 Literature Number: BPRA063

More Software Examples

DSK OUTPUT

2. 1mm jack
external power supply
9OV ac supply

"’I‘jt‘gﬁ 250mA 50/60Hz

amplicd multimedia spcakers
with RCA connector

CRO with RCA connector

EGA or VGA monitor

O pin RS232 cable
-

coml or com2

I

3 Mbytes HDD
1004 1BM compatible

PC DOS 4.01
DSKSD.EXE optional
DSKSL.EXE

4.2.3 Operation

Initiation

Figure 95: Music Player Equipment

\DSKWMINUET\ dsk5I music

-c1 J (com 1)
-c2 J (com 2)

The music program generates a series of sine waves at base and tune frequencies
with varying duration. Duration, base and the tune frequencies are contained in file
called ‘minuet.txt’. You can change the tune by changing the contents of this file. Try
changing the duration values first. Once you are successful with these, you can
proceed to change base and tune frequencies. The sine wave generation program is
in the file called ‘sinsub.asm’. This is used to calculate sine sample values for base
and tune notes. ‘Sinsub.asm’ uses a equation to produce a sine wave output which is
different from the one we used till now. You can run the minuet from within the

debugger as well.

TMS320C5x DSK Appiications Guide

123

More Software Examples

4.3 Sound Recorder
4.3.1 Overview
The application is a digital recording and playback facility. A simple graphical PC

interface displays the record and playback status.

4.3.2 Files

DIRECTORY FILES FUNCTION
\DSK\RECORDER\ sampler.exe host PC exe file
sampler.dsk dsk file

assembler source file
windows calling icon

sampler.asm
sampler.ico

high impedance 40002 microphone
other sound source with RCA jack

({

audio ampliticr
mudtimedia speakers
RCA 10 phono comnector

® By
= EGA of VGA monitar
=)
o
z
2 | e
w
a “ 9 pin RS232 cable
i DSK
= com! or com?
=2 d
= & .
o |3 e T
Q z 2. hmim jack
o o external power supply 3 Mbyies DD
© OV e supply .
el 250maA 506011/ 1004 TBM compatible
: DOS .01
Windosws optional
DSKSL.EXE

4.3.3 Operation

Figure 96: Sound Recorder Equipment

Initiation

\DSK\RECORDER\ sampler -c1 4 (com 1)
-c2 .J (com 2)

Command Keys

R record

P play

124

Literature Number: BPRA063

More Software Examples

You can run the program from a DOS window under Windows 3.1, 3.11, 95 and NT.
However, it will run slower. Use ‘sampler.ico’ file for icon definition when installing to
operate under Windows.

‘Sampler.exe’ file loads the ‘sampler.dsk’ onto DSK ready for recording. Hitting ‘R’ key
from the PC keyboard starts recording of the input of DSK. Just over one second's
length of data is recorded. Hitting ‘P’ key starts the playback. The quality of the
playback should be slightly degraded due to data packing but this may not be
noticeable.

The record and playback program fills the DSK's data memory with information read
from the AIC input port during record mode (R) and empties the memory locations to
the AIC output port during playback mode (p). The host PC program controls the
operation of the DSK by writing values to certain locations in DSK’ memory. A simple
PC interface informs the user when recording and playing have ceased.

The program packs two 8 bit words into one 16 bit memory location. Tightly packing in
the data optimises the recording time but unfortunately means that the least significant
6 bits of the AIC’s 14 bit word must be discarded. This reduces sound quality from 14
to 8 bits. In addition, the lower discarded bits represent lower volumes, and so quieter
signals will not be detected.

With some microphones, it may be difficult to record the signal. This is because the
audio signal provided by the microphone is too small despite being amplified four
times by the AIC. One solution is to use a microphone with higher output. Another
solution is to build a pre-amplifier as suggested in Designer Note Pages Number 50
(DNP 50). Ensure that the input is well grounded for high quality and low noise
recording.

TMS320C5x DSK Applications Guide 125

More Software Examples

4.4 Host Driven Function Generator

4.4.1 Overview
The function generator program uses a host PC as an interface for displaying and
modifying signals generated by the DSK. Both random noise and sine waves at
different frequencies can be created.

4.4.2 Files

DIRECTORY FILES FUNCTION

\DSK\FUNCTION\ func.exe host PC exe file
func.dsk dsk file
func.asm assembler source
litt.chr display fonts
trip.chr display fonts
egavga.bgi graphics drivers
func.txt operational guidance
func.ico windows calling icon

EGA or VGA monitor

L. 9 pin RS232 cable

coml or com?2

—

)

a.

=

-

o 2. Inm jack

< external power supply 3 Mbytes HDD

A 9V ac supply m”.f M bl

250mA 50°60H o M compaitbie
! e PC possor

Windows optional
DSKSL.EXE

CRO with RCA connector

(((Egg multimedia speakers
"f

Figure 97: Function Generator Equipment

4.4.3 Operation

All the above files must be in the same directory. EXE program downloads the DSK
file onto the ‘C50 board, so you do not need to download the DSK file separately. If
the mouse does not operate, use ‘up, down' keys to move the frequency up and down
by the amount ‘DELTA=100Hz'. DELTA is adjusted by using the number keys:

126 Literature Number: BPRA063

More Software Examples

Number | DELTA (Hz)
1

0

1 10
2 100
3 1000

Therefore frequency increments from 1Hz to 1000Hz in steps of (x10) are possible.
Maximum operational frequency is 5,500Hz.

Initiation
\DSK\FUNCTION\ func -c1 . (com 1)
-c2.4 (com?2)

Command Keys

N selects random noise
S selects sine wave
N change sine wave frequency

‘ESC’ ends the program. You can run the program from a DOS window under
Windows 3.1, 3.11, 95 and NT. However, it will run slower. The program can also be
installed with an icon for windows operation.

Host PC communicates with DSK via its serial port. DSK program generates sine
wave by reading certain constants from defined memory locations. The host program
modifies these values directly which causes DSK to generate a sine wave at different
frequencies. Examine the FUNC.ASM program. You will notice that there is no
communication program with the PC Host. This is because, when the Host PC wants
to communicate with DSK, it stops it and modities the contents of certain memory
locations affecting the changes requested by the user.

TMS320C5x DSK Appilications Guide 127

More Software Examples

4.5 Host Driven DTMF Dialler

4.5.1 Overview

DSK TouchTone software uses a host PC to communicate dialled digits to the DSK.
The DSK converts the digits into sound in compliance with the DTMF standard.

4.5.2 Files
DIRECTORY FILES FUNCTION
\DSK\DTMF\ dialer.exe host PC exe file
dtmf50.dsk dsk file
dtmf50.asm assembler source
phnumbrs.ato display fonts
dtmf.ico windows calling icon

EGA or VGA monitor

P
=
=
= o
2 w .
o = 2 0mm jack
:’f; 8 g\\!cnm\ |m;\ er supply 3 Mbytes HDD
ac supply .
[a} C SUpply 1005 IBM compatible

250mA 30/60H
50mA 50'60Hz PC posa4.01

Windows optional
DSKSL.EXE

CRO with probe
multimedia speakers
telephone line via transformer

Figure 98: DTMF Equipment

4.5.3 Operation

Initiation
\ DSK \DIALER\ dialer -c1. (comT1)
-c2.J (com2)

Command Keys

D direct dialling
S stored number dialling
Noa

128 Literature Number: BPRA0O63

More Software Examples

The program operation is not so simple. A standard DTMF telephone keypad consists
of a matrix where each row and column is assigned a unique frequency. Selecting a
number is achieved by superimposing a column frequency with a row frequency,
giving a distinctive tone.

When 'DIALER.EXE’ is run, it loads '‘DTMF50.DSK' to DSK. The host PC
communicates the number to be dialled to the DSK. The DSP processor then
calculates the two required sine waves and superimposes them. The DSK outputs the
signal for a set period of time. This is repeated for all the digits, thus conveying the
number. Telephone numbers can be dialled in two ways:

¢ by selecting a predefined number using the arrow keys
e dialling a number directly by typing D, the required number, followed by enter

Note: The phone log book can be altered using a ASCII text editor.

Note: ™" and"#" are valid keys for a distinct tone. *," causes an insertion of 1 second
pause.

TMS320C5x DSK Applications Guide 129

More Software Examples

4.6 Spectrum Analyser

4.6.1 Overview
The spectrum analyser transforms the DSK into a useful laboratory tool. A PC based
display shows a graphical representation of the serial port input signal in the frequency
domain.

4.6.2 Files

DIRECTORY FILES FUNCTION

\DSK\SPEC\ spec50.exe Host PC exe file
spec50.c C source for Host PC
spec50.h C header for Host PC
spec50.asm C5x Assembler source
spec50.dsk DSK executable
spec50.txt text explanation
dsk_twid.asm fft twiddle factor source
egavga.bgi graphics drivers

DSK INPUT

RN S P
2 Inm jack =~
external power supply PC][;:’|:<4|U|l\;|

eIV a6 supply o
YRR 2s0ma 0 cony TN

POWER

Figure 99: Spectrum Analyser Equipment

4.6.3 Operation

Initiation

\ DSK \SPEC\ spec50 -c1J (com 1)
-c2 .J (com 2)

Command Keys

A Averaging function 1,2,3,4

R Reset DSK

Q Return to MS-DOS

130 Literature Number: BPRA0O63

More Software Examples

Before running the software, ground the DSK’s serial in and out ports. Reconnect after
initialization.

The DSK reads the input samples from the AIC into a buffer. When the buffer is full, it
performs a 256 radix 2 FFT on the data, transforming it into the frequency domain.
The DSK then signals to the PC that the data is ready. The real part of the FFT data is
grabbed by the PC, loaded into memory and then displayed.

Pressing A performs an averaging feature, where the most recent data is averaged
with previous values. Various averaging values can be selected: 1, 2, 4 & 8.

Red tops on the graphic display lag behind the signal, providing a display of previously
viewed samples.

TMS320C5x DSK Appiications Guide 131

More Software Examples

4.7 Oscilloscope

4.7.1 Overview
The oscilloscope software transforms the DSK and PC into a virtual oscilloscope. The
DSK relays the serial port input signal's size and phase information to a host PC
where it is displayed.

4.7.2 Files
DIRECTORY FILES FUNCTION
\DSK\OSCOPE\ oscope.exe Host PC exe file
oscope.asm C5x Assembler source
oscope.dsk DSK executable
oscope. txt Text explanation
frame.dta frame data
oscope.ico Windows icon
egavga.bgi graphics drivers
RCA microphone: 4000
signal generator: 200 1z
sound souree: RCA jack
5 y Ao
.{:
4
%}
& 9 pin R$232 cable
L s
-
* coml orcom? ff
PN
w
% 2. hmm jack
a . "L,, . DOS 401
f&:“:i’t’“g‘w‘:“ uoply PC psksLixi
250mA S0 60117 OSCOPEIXT

Figure 100: Oscilloscope Equipment

132 Literature Number: BPRA063

More Software Examples

4.7.3 Operation

Initiation
\DSK\OSCOPE\ oscope -¢1.J (com 1)
-c2.1 (com2)

Command Keys
ESC exit - return to DOS
left - right arrow increase - decrease samples
up - down arrow increase - decrease volts per division
R reset DSK
S input how many samples
T input trigger level
F Frame-by-frame mode
Following commands operate only in Frame-by-Frame mode
space process next frame

toggle display data mode
(6] toggle SaveFrame to file

Entering trigger level disables PC interrupts which can create problems. It is best not
to change this value. If the signal is unstable, use Frame-by-Frame mode. In this
mode you can save sample values to a file and display them on the screen.

The DSK is responsible for reading the AIC and sending the information to the PC via
the RS232 cable. The 14 bit resolution of the AIC is truncated to give an 8 bit word
consisting of the 8 most significant bits of the AIC which are then transmitted to the
PC.

The PC grabs the series of 8 bit words and stores them into a buffer. When the buffer
is full, the PC looks for a triggering point which occurs when the signal crosses the x-
axis and displays the signal accordingly.

TMS320C5x DSK Appiications Guide 133

Additional Information

5. Additional Information

5.1 Hints and Tips

5.1.1 DSK processor
e User program memory starts at memory location 0980h and is 8832 words long.
¢ Block B0 of memory can be configured to either program or data memory using the
CNF bit. See the TMS320C5x USER'’S GUIDE for details.

5.1.2 DSK software
¢ New versions of both the monitor debugger and assembly software are periodically
released by Texas Instruments. Free upgrades can be found on Tl's E-PIC BBS or
via TI's Internet service.
e To quit the debugger program without terminating the program being run on your
DSK type CTRL-BREAK
o View all the readme files on the TMS320 DSK tools disk.

c:\DSK\DSK.DOC the DSK User's Guide

c\DSK\INSTALL.DOC installation and technical reference

C\DSK\README.1ST read this file first - general information

c:\DSK\APPS\APPS.DOC standard application description programs and how to
use them

c:\DSKIROMI\ROM.DOC creating a communications kernel code to program an
EPROM

e |t is preferable to work using hexadecimal numbers when programming code.
Hexadecimal is represented within the monitor/debugger program and therefore
aids debugging.

o Alist of current bugs for the TMS320C50 processor, assembler, debugger and DSK
board are available on the BBS and Internet. Bug fixes are also usually included.

* In single step mode, the debugger is prone to change register values. This does not
occur when executing to a specific address using the XA command.

e The latest release of the monitor debugger (version 1.02) performs serial port
initialization of the TMS320C50.

5.1.3 DSK AIC

e The maximum sampling rate of the AIC is 19.2KHz.

e The AIC circuit needs to be initialized only once in between resets and power off.
The TRY1.ASM program included with the DSK will run only when the AIC has
been initialized. This can be achieved by first running a software program that
contains the AlC initialization routine such as FUNC.DSK.

e Within the STARTER KIT'S USER GUIDE the input and output serial ports of the
PCB have been unintentionally swapped. Please refer to the white silk-screen
markings on the board for the correct input and outputs.

134 Literature Number: BPRA063

Additional Information

The AIC's anti-aliasing filter on the A/D is a bandpass filter which can be bypassed
within software. See PASS.ASM example in Section 2 for details. If a DC path is
required, the anti-aliasing filter must be disabled and an external low-pass filter
attached.

The D/A low-pass filter is always active and cannot be disabled via software.

The frequency roll-off of the bandpass filter and the output low-pass filter is
determined by the switched capacitor filter clock frequency. This is set by software
control, using typical characteristic values for the filters. For accuracy, these should
be measured directly.

The conversion frequencies for the A/D and D/A can be different. See Appendix of
the DSK USER'S GUIDE for full details.

The gain control which is implemented through software only is featured on the A/D
side.

A large selection table of AIC set-up configuration is available from the Tl Internet
or BBS E-PIC (DSK_PP26.EXE).

PC to DSK communication baud rates can be varied to a maximum of 57,600 BPS.

TMS320C5x DSK Applications Guide 135

Additional Information

5.2 AIC Settings

This report describes the steps required to initialize the AIC of the TMS320C50 DSK.
The analogue interfacing circuit (AIC) is used to interface the analogue world to the
DSK's internal world. Before this can occur, the AIC must be initialized and instructed
how to perform. This takes place in four phases:

e Set the internal timer of the DSP to drive the master clock of the AIC

e Set the serial port of the DSP to receive and transmit to the AIC

e Place the AIC in a known state by performing a reset

e | oad the AIC’s internal registers with operational values.

A software based initialization routine is required to carry out the four phases as
documented in Chapter 2. The four internal registers of the AIC are loaded with values
that determine sampling rates, filtering characteristics and operational modes. The
registers are as follows:

Register A xx | TAreg |xx| RAreg |00
Register A’ B’ X TA reg | x RA’reg | 01
Register B X TBreg |x RBreg |10
AIC Control xxxxxxxx | d7d6d5d4d3d2 | 11

The AIC registers work in conjunction with two counters A and B. These counters are
loaded with the register values and are decremented every clock cycle. Once the
counters are zero an interrupt is generated and the counters are reloaded from the
registers.

Register A and B control the sampling and frequency characteristics of the AIC: T for
the transmit and R for receive. The coder and decoder can therefore work at different
frequencies. Registers A'B' hold values which are used to increase or retard the timing
on the receive and transmit circuits. AIC control sets the functionality of the AIC:

d2: deletes or inserts the input bandpass filter
d3: disables or enables the loopback function (see DSK USER’S GUIDE page B-8

for details)

d4: disable or enables the AUX IN+ and AUX IN- pins (see DSK USER'S GUIDE
page B-8)

d5: asynchronous/synchronous transmit receive sections (see DSK USER'S GUIDE
page B-7)

d6: gain on input
d7: gainon input

Note that the gain is only on the input
Note that the output filter is always on.

136 Literature Number: BPRA063

Additional Information

dé d7 gain
0 0 1

0 1 2

1 0 4

1 1 1

5.2.1 Loading values

The AIC works by primary and secondary communications. In normal operation, only
primary communications are used when reading and writing data to the AIC. When 14
bit data is sent to the AIC the two least significant bits are reserved for control. These
two control bits tell the AIC to reload the counters from the registers in a particular
way.

It is important to ensure that when sending data to the AIC the two least significant
bits are set correctly (usually 00). If these bits are not controlled correctly, the AIC
operation maybe altered unintentionally.

Bits 01 load A Counter load B Counter
00 TA . RA TB : RB
01 TA+TA' . RA+RA’ TB : RB
10 TA-TA' . RA-RA TB : RB
11 TA . RA B : RB *

* In the special case ot 11 being sent, the AIC is told to expect a secondary
transmission that is to change the registers values.

Bit01 Register
00 A
01 AB’
10 B
11 AIC

The two least significant bits of the secondary transmission determine the register to
be loaded.

5.2.2 TA, TB, RA, RB Values
A) L
D/A conversion timing
8]

RA . L.
A/D conversion timing
RB

Calculating the sampling rate means satisfying the following equations:

TMS320C5x DSK Appiications Guide 137

Additional Information

: master clock frequency

./‘\ILII\
Ton = | TDDR : DSP timing register
1. x(TDDR + 1) x (PRD +1) PRD : DSP period register
1 : period of CLKOUT
' i :switched capacitor frequency
oy = Eﬁﬁq— counter, :TAorRA
! counter, TBor RB

. T values and R values are identical for
L= s sampling rate the same sampling rates.
T countery

MCLK frequency is usually set at the highest level: 10 MHz.
The switch capacitor filter frequency should be set to 288,000 to give the typical filter

values.

/i Lo X390 e ower cut-off for bandpass input filt

Juavo_1omtr = 500000 ower cut-off for bandpass inputfilter
f - Jsa X 3000 4 t-off for bandpass input filte

Jsaxp_veree 288000 upper cut-ott tor andpass input filter
. Sy %3700 ,

Trow_rss = =5ge000 3dB cut-off for lowpass output filter

Changing the value of the SCF to change the filter characteristics, this however will
change the sampling rate.

The frequencies 300Hz, 3600Hz and 3700Hz are taken from the typical characteristics
diagram of the bandpass and low-pass filter diagram in the data sheet. As these
values are typical, the real values can only be measured.

Please consult appendix B within the DSK USER'S GUIDE for more information.

5.2.3 Typical Values

8kHz 16kHz
TA 17 TA 9
RA 17 RA 9
B 37 B 36
RB 37 RB 36

138 Literature Number: BPRA063

Additional Information

5.3 Questions and Answers
Why is the DSK only supplied with a 19.2kHz mono AIC?

Audio codecs that are supplied with low-end DSP development systems are not
suitable for many general purpose applications that the TMS320C50 DSP
processor can handle. The TMS320C50 is multi-functional and therefore the AIC
was chosen to give the most flexibility and performance in the widest range of
applications.

Audio AIC circuits are only suitable for high quality audio applications, whereas
the AIC supplied with the DSK can be programmed for a wide range of sampling
rates, incorporates filters and has 14 bit resolution.

Texas Instruments has designed an add-on board, which is available through
distribution, to change the general purpose AIC for a 44kHz audio codec for
specialised audio applications.

Why do some programs only run some of the time?

The DSK's AIC must be initialized after reset. If your program does not
incorporate an AlC initialization routine the codec will not function. The routine
need be executed only once, therefore running software that initializes the AIC
before your program will solve the problem.

How do I set the AIC registers?
See chapter 2 and 5.
Is it possible to use an external clock with the TMS320C5x?

By connecting a x1 clock source to the CLKIN2 pin input and pulling CLK2MD
pin low. The signal must be clean and cross-talk precautions taken.

The input to my DSK is not working
The DSK is designed to connect directly to an 8Q microphone via an RCA jack.
Sometimes, the output level of a microphone is not sufficient. It is suggested that
an amplified microphone is used to ensure that the appropriate signal level is
achieved.
5.4 Known Bugs

The following is a list of currently known bugs with current workarounds. For up-to-
date information, watch Texas Instruments ftp and bbs sites

5.4.1 Handshake error

DSK sfter about 7 to 10 minutes of operation may produce a ‘handshake error'. A red
box will appear and no further communication will take place between the DSK and
the Host. The only workaroud at the moment is to reset the DSK.

5.4.2 DTMF

When loaded with DIALER, after about 3 minutes of operation, tones produced
becomes garbled. Reset DSK and re-run DIALER.

TMS320C5x DSK Applications Guide 139

Adaditional Information

5.4.3 Function

5.4.3.1 Amplitude

When producing a 100Hz Sine wave, the output signal amplitude will vary if
incremented in 10Hz steps. There is no workaround for this bug at the moment.

5.4.3.2 Random noise generation

If the multiplier buttons are selected when the random noise generator is operating,
the screen will show a sine wave output. However the function generator will continue
to produce noise.

5.4.4 Network Problems

If your PC is connected to the network, it may have network drivers resident in rhz
lower portion of memory. DSK debugger and loader uses this section of memory and
may overwrite these programs. DSK and application examples will operate correctly
but when you exit the debugger, you may get the following message:

general read failure on network drive

Abort, Retry, Fail?
Come out of this message with an Abort. You will need to reset your PC to correct the
problem.

Best solution to this problem is to disconnect from the network and do not load the
network drivers when using DSK.

5.4.5 DSK Debugger loads

When in debugger, after about seven consequtive program loads, program counter of
'C50 may be set to a wrong point. This will give the impression that the program is not
operating correctly. If you are doing consequtive program loads, before issuing XG
command, check the program counter to see if it is set correctly.

140 Literature Number: BPRA0O63

Sources of Information

6. Sources of Information

6.1 Product Information Centre

TEXAS
INSTRUMENTS
E-PIC DSP Support
Multilingual Technical Hotline
Deutsch .. +49-(0)8161-80 3311

English - +44 - (0)1604-66 3339
Frangais — 433 -{0)130-70 1164

Italiano . +33-(0)130-70 1167

24 Hours FAXLINE +33 - (01130-70 1032

E-Mail . .. epic @ti.com
Application Support (Via Modem)

BBS . --+33 - (0)130-70 1199

Internet____— . http://www.ti.com Y

6.1.1 Overview

“The mission of the E-PIC team is to satisfy the technical information needs of Texas
Instruments’ customers through personal and individual contact.”

TI's Semiconductor European Product Information Centre is a pan-European support
team that has been established to assist you with your technical product inquiries. Our
experts provide you with accurate and prompt responses to your design and
development needs, complementing the support that is offered by your distributor. In
addition to the on-site libraries, E-PIC can call on a world-wide computer network to
access Tl's technical information resources, enabling us to cover all of our
semiconductor product range. All services are provided in English, French, Italian and
German by a multilingual team of engineers.

6.1.2 Product Information and Technical Support

E-PIC provides assistance in both the design phase of a product as well as application
support and problem solving. Our experienced team will look into your problems and
find an answer quickly.

Multilingual hot line Replacements

Availability Bug fixes

Specification Product choice

DSP laboratory Second source part information
Data books Data sheets

Application notes Fax service

Product bulletins Registration for mailings
Samples Other inquiries

TMS320C5x DSK Applications Guide 141

Sources of Information

6.1.3 BBS

E-PIC bulletin board service places a wide selection of DSK programs on a world-wide
ftp server. By simply dialling the BBS number and logging-on via a modem you have
access to a vast software resource that you can take freely and modify. Access to
interesting and useful DSK programs allows you to see how others have tackled DSP
design issues and provides a solid basis for application development. New releases of
the DSK assembler and debugger are also available free of charge from the BBS.

Note:
The BBS covers not only DSK software but, in addition, there is a wide range of
software for all of our fixed and floating point processors - also freely available.

The debugger can run COFF type files that are available from all TMS320C5x
processors.

6.2 Internet

The number of subscribers to the world-wide Web is growing rapidly, providing on-line
users with a vast database of information. The Tl home page gives up-to-date
information on all of our semiconductor products:

Tl Home Page http://www.ti.com

Tl Semiconductors http://www.ti.com/sc/docs/schome.htm

TI DSP Solutions http://www ti.com/sc/docs/dsps/dsphome.htm
DSP Hotline http://www ti.com/sc/docs/dsps/expsys.htm

DSP software co-operative http://www.ti.com/sc/docs/dsps/softcoop/

DSP Designers Note Book Pages http://www.ti.com/sc/docs/dsps/dnp/contents.htm
Training Workshop Dates http://www.ti.com/sc/docs/training.htm

JTAG home page http://www.ti.com/sc/docs/jtag/jtaghome.htm

TI microcontrollers http://www.ti.com/sc/docs/micro/home.htm

TI&ME - custom information page http://www.ti.com

The Texas Instruments TMS320 Third Party Program is the most extensive collection
of Digital Signal Processing development support in the industry. Over 250
independent companies and consultants provide development boards, operating
systems, software algorithms, function libraries and system consulting services. More
information about Third Party support is available from either E-PIC or the Tl web site.

6.2.1 TI&ME™ Internet Information Service.

TI&RME™ is your own custom web page on www.ti.com with direct hotlinks to new
information from Texas Instruments on only those interests that you specify. You can
request your own personalised weekly e-mail newsletter when anything new (within
your specific interests) is added to www.ti.com. The e-mail contains the title and a
brief abstract of the new information. This optional e-mail newsletter is an easy way to
keep informed on new developments without spending your time searching.

142 Literature Number: BPRA063

Sources of Information

Access to the Tl on-line library of over 3000 semiconductor data sheets with an easy
search front end. View these on-line in PDF or SGML or print a copy to your postscript
printer. You are completely in control of the information flow: You select only what you
are interested in.

- Tl delivers only what you request.
- You may change your interest profile at any time.

6.3 Tl Workshops

Texas Instruments’ approved workshops give designers the opportunity to learn DSP
programming principles from the experts. We understand the need for high quality
training at an affordable price. We therefore offer a series of technical design
workshops aimed specifically at DSP design engineers who wish to implement their
designs more effectively.

Based on a structure of classroom learning and design laboratory sessions, the
workshop participant quickly learns the major features of a processor and how to
maximise its performance. Lessons learnt within the workshops can be used to
improve your own designs.

The courses are targeted at both the experienced DSP programmer and the novice
alike, covering the common issues that surround all DSP designs. Professional
engineers, students, university lecturers and engineering project managers who want
to improve their knowledge of DSP will find the courses useful. For companies who
wish to train many engineers, Tl offers an in-house training scheme that can prove
more cost effective. timed for your convenience and tailored to your specific needs

Workshops are available for all of our fixed and floating point DSP processors and
also in several application areas such as digital motor control and active noise
cancellation. The sessions are held in different locations within Europe and are taught
in various languages. Texas Instruments publishes course dates on a quarterly basis.
Please refer to regular mailings or E-PIC or the Tl homepage for further details on
fixed point and floating point workshops.

The TMS320C5x Workshop Agenda

Development Tools: Software development process
Using COFF tools
Simulator

Program Control: Branch instructions

Subroutine calls
Repeat instructions
Block repeats

Numerical Issues: Binary fractions
IIR vs. FIR filters
Algorithm Development: The algorithm
Local Operations
Multiprocessor Interfacing: TMS320C5x multiprocessing techniques

Bit /O interfacing
Global memory interfacing

TMS320C5x DSK Applications Guide 143

Sources of Information

HOLD and HOLDA interfacing
DMA operation

Serial ports

TDM system operation

The course fee includes all study material, use of hardware and take-home literature.
(To ensure a place on a workshop, please book at least four weeks in advance).

6.4 Literature

6.4.1 The DSP Teaching Kit

The DTK or DSP Teaching Kit is a popular package that has already proved
successful with universities, companies and individuals throughout Europe. Sold as a
complete pack, the kit includes lecture foils, lecture notes along with a demonstration
disk. An AC power supply and RS232 cable are supplied with the DTK - all the
equipment needed to use the DTK as a teaching aid and to demonstrate software.
The kit can be taught by anyone who has a basic knowledge of DSP as all the
lecturing material is provided. In five lectures the fundamentals of DSP from sampling
and filtering to more advanced topics such as bit reversed addressing in FFTs are
covered.

For further information on the teaching kit please refer to E-PIC or distribution.

DSP Teaching Kit Part Number: TMDS320015X

6.4.2 TMS320C5x Related Tl Books

TMS320C5x User's Guide SPRU056B
TMS320C5x Fixed-Point DSP Product Bulletin SPRT119A
TMS320C5x Power Dissipation Application Report SPRA030
TMS320C5x DSP Seminar Workbook SPRWO017
TMS320C5x Data Sheet SPRS030
Telecommunications Applications With ‘C5x SPRA033
TMS320WP010 Product Bulletin SPRT124
TMS320WP010 Data Sheet SPRS040
TC3201S54B Product Bulletin SPRT114
TC3201S54B Chipset User's Guide (Preliminary) SPRU128A
‘C5x On-Chip Oscillator With External Resonator SPRA054

‘C5x application notes and DNP at: httm://www.ti.com/sc/docs/psheets/appnote.htm

6.5 Further Development

The DSK is the first step on the DSP development ladder. Texas Instruments provides
a range of higher level development tools which provide additional features to the
DSK.

144 Literature Number: BPRA0O63

Sources of Information

Tool Capabilities

DSP
Starter Kit

|

‘ Introduction to DSP
.

i

; oL
$99 $500 $995 $6,000
Recommended Price

6.5.1 Hardware
TMS320 Evaluation Modules (EVMs) are low-cost development boards used for
device evaluation, benchmarking, and limited system debug. EVMs are available for
the TMS320C 16, 'C2x, 'C3x, and 'C5x. Common TMS320 EVM features inciude:

¢ Modification/dispiay of memory and registers

e Assembler

e Software single-step and breakpoint capabilities
® On-board memory

® Host upload/download capabilities

¢ 1/O capability

TMS320C5x EValutation Module Part Number: TMDS3260050

The TMS320 Extended Development Systems (XDSs) are powerful, full-speed
emulators used for system-level integration and debug. T provides conventional in-
circuit emulators as well as the world's first in-system scan-based emulators (XDS/22
and XDS510). The XDS510 emulator is currently available for TMS320C3x, 'C4x, ‘C5x
and 'C54x DSPs. Key features of the XDS510 include:

 Full-speed execution and device monitoring within your target system via a 14-pin
target connector

Global run/stop/breakpoint of parallel-processing DSPs

High-level language debugging interface

Software breakpoint/trace on all program and data addresses

Single-step execution

Windowed user interface similar to that of the 'C3x, 'C4x, or the 'C5x simulator

TMS320C5x DSK Appiications Guide 145

Sources of Information

¢ Loading/inspecting/modification of all registers and memory
o Benchmarking of execution time of clock cycles

Full speed emulation and monitoring of the target system is performed serially via a
14-wire cable, which runs from the XDS510 to the target system.

TMS320C5x XDS Part Number: TMDS00510

6.5.2 Software

Speedy development and code maintenance over the life cycle of a product are
concerns that all developers share. Tl supports DSP developers with a family of
optimising compilers for the TMS320 DSPs. These compilers translate ANSI-standard,
C language files into highly efficient TMS320 assembly language source files, which
are then input to a TMS320 assembler/linker.

Tl offers C compilers that support the TMS320C2xx, 'C3x, 'C4x, ‘C5x and 'C54x

devices, and are complemented by the standard TMS320 programmer's interface for

debugging C and assembly source code. The C compilers produce a rich set of

debugging information, which allows source-level debugging in C. This enhances

productivity and shortens the development cycle for both fixed-point and floating-point

applications. Key features of the TMS320 C Compilers include:

e Highly efficient code, incorporating state-of-the-art generic and target-specific
optimisations.

* ANSI standard runtime-support library

+ ROM-able, relocatable, and re-entrant code

o The ability to link C programs with assembly language routines, allowing hand
coding of time-critical functions in assembly language

» A C shell program that facilitates one-step translation from C source to executable
code

TMS320C5x C Compiler Part Number: TMDS324L.855-02
TMS320C5x Assembler/Linker Part Number: TMDS3241.850-02
TMS320C5x Debugger Part Number: TMDS324L01

A TMS320 simulator is a software program that simulates the TMS320 DSPs for cost-
effective code development and verification in non-real-time. Each simulator replicate
allows the designer to verify operation and monitor the state of the TMS320.
Simulators are available for the following devices: 'C2xx, 'C3x, 'C4x, ‘C5x and 'C54x.
Key features common to all TMS320 software simulators include:

 Execution of user-oriented DSP programs on a host computer

« Modification and inspection of registers

» Data and program memory modification and display:

- Modification of an entire block at any time

- Initialization of memory before a program is loaded

Simulation of peripherals, caches, and pipelined timings

Extraction of instruction cycle timing for device performance analysis

146 Literature Number: BPRA063

Sources of Information

* Programmable breakpoints on:
- Instruction acquisition
- Memory reads and writes(data or program)
- Data patterns on the data bus or the program bus
- Error conditions
e Trace on:
- Accumulator
- Program counter
~ Auxiliary registers
* Single-stepping of instructions.

The simulators use TMS320 object code produced by the TMS320 macro
assembler/linker or ANSI C compiler.

TMS320C5x Simulator Part Number: TMDS3241.851-02

TMS320C5x DSK Applications Guide 147

71 Sales Offices in Europe

BELGIUM

Avenue Jules Bordetlaan 11

1140 BRUXELLES/BRUSSELS

Tel: 32 (0)2 74 55 400 - Fax : 32 (0)2 74 55 410

FINLAND

Tekniikantie 12

02150 ESPOO

Tel: 358 (0)9 43 54 20 33 - Fax : 358 (0)9 46 73 23

FRANCE, MIDDLE-EAST & AFRICA

8-10 Avenue Morane-Saulnier - BP 67

78141 VELIZY-VILLACOUBLAY Cedex
Tel:33(0)130701001 - Fax:33(0)1 307010 54

GERMANY

Haggertystrae 1

85356 FREISING

Tel : 49 (0)8161 800 - Fax : 49 (0)8161 80 45 16

Karl Wiechert Allee 74
30625 HANNOVER

Tel:49(0)5115 406 0 - Fax : 49 (0)5115 406 300

MaybachstraBe 11
73760 OSTFILDERN (Stuttgart)
Tel: 49(0)7113 40 30 - Fax : 49 (0)7113 40 32 57

HOLLAND

Buitenveldertselaan 3-5-7

1082 VA AMSTERDAM

Tel : 31 (0)20546 98 00 - Fax : 31 (0)20646 31 36

ITALY

Centro Direzionale Colleoni - Palazzo Perseo
Via Paracelso, 12

20041 AGRATE BRIANZA (M)

Tel: 39 (0)39 684 21 - Fax : 39 (0)39 684 2912

REPUBLIC OF IRELAND

Europa House, Harcourt street

DUBLIN 2

Tel: +(353) 147552 33 - Fax : +(353) 14754778

{'f TeEXAS
INSTRUMENTS

©1997 Texas Instruments Inc

1 ‘9 TeXAS
| INSTRUMENTS

DSP SUPPORT

| Multilingual Technical Hotline

Deutsch _ +49-(0)8161-803311
English . +44-(0)16 0466 3399
Frangais +33-(0)13070 1164

Italiano +33-(0)13070 1167

" 24 Hours FAXLINE +33-(0)130701032
E-Mail epic@ti.com
1 Application Support (Via Modem)
‘ BBS +33-(0)130701199
Internet http://www.ti.com
SPAIN / PORTUGAL

C/ Gobelas, 43

Urbanizacion - La Florida

28023 MADRID

Tel:34(0)1 37280 51 - Fax : 34 (0)1 372 80 87

SWEDEN

Halsinggegatan, 40 - Box 6706

11385 STOCKHOLM

Tel : 46 (0)8 587 555 00 - Fax : 46(0)8 587 555 90

UNITED KINGDOM

800 Pavilion Drive

Northampton Business Park

NORTHAMPTON NN4 7YL

Tel : 44 (0)1604 66 31 00 - Fax : 44 (0)1604 66 31 06

Duocom - October 1997

Printed in France by Zimmerman

“’J TEXAS
INSTRUMENTS

© 1997, Texas Instruments BPRAQO63
Printed in France, October 1997

